

Array processing, Phased arrays, Beamforming

Departamento de Eletrônica e Computação Centro de Tecnologia

20

- ELC1148 Comunicações Estratégicas
- Prof. Fernando DeCastro

Nos Caps I.1, I.2, I.3, I.4 discutimos várias situações em que a determinação do DOA (Direction Of Arrival) de sinais-ameaça (threat signals) é imperativa para o sucesso das ações de suporte eletrônico (ES), ataque eletrônico (EA) e proteção eletrônica (EP). Historicamente, o primeiro sistema para determinar o DOA de ondas EM foi construído ainda no início do século 20 (https://books.google.se/books?id=7rrA5ZFH3gUC). A ideia era apontar mecanicamente para diversas direções (inclusive manualmente) a direção do boresight (https://en.wikipedia.org/wiki/Antenna boresight) de uma antena com beamwidth não muito largo no lobo principal de diagrama de irradiacão seu um (https://www.tutorialspoint.com/antenna theory/antenna theory beam width.htm), dentro das limitações da tecnologia de antenas da época, conforme mostra (A) abaixo (ver http://www.navyatcapehenlopen.info/wirelessradiostations.html). Para cada direção apontada pelo boresight do padrão de irradiação da antena era efetuado o registro da intensidade do sinal recebido na respectiva direção. O conjunto de registros era lido e a direção apontada em que o sinal recebido resultava máximo era considerada o DOA da fonte do sinal. A principal aplicação da tecnologia era a navegação marítima e de aeronaves, com outros usos civis e militares.

(A) Experimento com uma antena *loop* para *directionfinding* em Philadelphia – USA por volta do ano 1918.

Logo percebeu-se que o desempenho da técnica era significativamente aprimorado com o emprego de um *array* (= conjunto) de antenas separadas espacialmente, o que reduzia significativamente o *beamwidth*, aumentando a precisão do DOA. Nesta variante da técnica, o sinal de saída de cada antena do *array* é submetido a uma rede L–C (capacitor – indutor), que altera a fase (e a amplitude) do sinal de entrada. O sinal de saída de cada rede L–C é aplicado a um circuito somador que soma os sinais de saída das respectivas redes. Para a redução do *beamwidth* do *array* as redes L–C são projetadas de modo que, para ondas EM que incidam no *array* na direção do *boresight* desejado (45° em (A) abaixo), a fase (atraso no tempo Δt em (A) abaixo) dos sinais nas respectivas saídas das redes L–C são tais que eles se interferem construtivamente no circuito somador, maximizando o ganho do *array* na direção do *boresight* do seu diagrama de irradiação (curva marrom em (A) e (B) abaixo), reduzindo assim o seu *beamwidth*. Ondas EM que incidem no *array* em ângulos diferentes do DOA do *boresight* resultam em sinais com fases distintas na saída das redes L–C, e, portanto, não se interferem de maneira construtiva no somador. Isto resulta em um menor ganho do diagrama de irradiação do *array* no DOA de uma onda EM incidindo em um ângulo diferente do DOA do *boresight*, conforme onda EM incidindo sob um DOA de 90° mostrado em (B).

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

A ideia de combinar os sinais recebidos por um conjunto de antenas separadas espacialmente pode ser considerado como o nascimento da tecnologia de *phased arrays* (https://en.wikipedia.org/wiki/Phased_array), objeto de estudo nesta disciplina. A redução significativa do *beamwidth* propiciada pela técnica *phased array*, aumentando a precisão do DOA, permitiu a localização de múltiplas fontes de sinal separadas espacialmente mas angularmente próximas, o que antes era impossível devido ao *beamwidth* excessivamente largo de antenas isoladas. Durante a década de 1930, a determinação do DOA de sinais-ameaça (*threat signals*) evoluiu para a localização ativa de alvos utilizando a técnica *phased array*, em que uma onda EM é transmitida em uma determinada direção sob um estreito *beamwidth* e a onda EM refletida no alvo indica o *range* e o DOA do alvo, conforme já discutimos no Cap I.2 no contexto moderno. O sistema foi denominado *RAdio Detection And Ranging* (RADAR), e o uso combinado e coerente de antenas *phased array*, tanto para transmissão como para recepção da onda EM, pode ser considerado como o nascimento da tecnologia denominada *Array Processing*, objeto de estudo neste capítulo. Em (A) abaixo é mostrado uma representação pictórica das torres que sustentavam o *phased array* do lendário radar britânico *Chain Home*, projetado e construído na década dos anos 30 (ver https://en.wikipedia.org/wiki/Chain Home e http://www.fccdecastro.com.br/pdf/Radar1935_45.pdf). O *phased array* era do tipo *curtain array* (ver http://www.fccdecastro.com.br/pdf/HFCurtainArray.pdf).

época, das torres do *Chain Home* em Sussex – UK (havia diversas localidades no UK com estações da rede de radares *Chain Home*).

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

A partir destes primeiros anos iniciais, principalmente durante e após a 2^ª guerra mundial (<u>https://en.wikipedia.org/wiki/Radar_in_World_War_II</u>), a tecnologia *Array Processing* avançou e se difundiu rapidamente em inúmeras áreas de aplicação.

Na última década, os *phased-arrays* passaram a aproximar o estado da arte, tornando-se totalmente *electronically steerable*, possibilitando apontar eletronicamente o *boresight* de seu diagrama de irradiação para qualquer direção desejada sem qualquer dispositivo mecânico envolvido no posicionamento angular do lobo principal do diagrama de irradiação do *array* (ver <u>https://www.unmannedsystemstechnology.com/2020/06/electronically-steered-phased-array-antennas-for-tactical-datalinks/</u>). Os *electronically steerable phased-arrays* propiciam uma muito maior agilidade no posicionamento angular do lobo principal do *array* do que é possível com um sistema mecânico, o que é crucial, por exemplo, na operação do radar tático de uma aeronave militar (<u>https://www.defencetalk.com/combat-proven-aesa-radars-continue-to-set-the-standard-35270/</u>).

Uma das áreas que mais se beneficiou da acelerada difusão de Array Processing foi a área de antenas inteligentes (ver https://en.wikipedia.org/wiki/Smart antenna e https://en.wikipedia.org/wiki/History of smart antennas), em particular tecnologias MIMO (ver https://silvustechnologies.com/why-silvus/technology/introduction-to-mimo/ as е https://en.wikipedia.org/wiki/MIMO), todas elas tecnologias cruciais que viabilizaram o desenvolvimento e implementação dos atuais sistemas wireless 4G-MIMO (https://www.electronics-notes.com/articles/connectivity/4g-ltelong-term-evolution/mimo.php), 5G-MIMO (https://www.electronics-notes.com/articles/connectivity/5g-mobile-wirelesscellular/massive-mimo.php), IEEE 802.11n (WiFi-4) е IEEE 802.11ac (WiFi-5) (https://www.networkworld.com/article/3238664/80211-wi-fi-standards-and-speeds-explained.html).

Outra área beneficiada foi a radio-astronomia, com importantes arrays construídos em New Mexico – USA(https://public.nrao.edu/telescopes/vla/),Australia(https://www.skatelescope.org/australia/),Chile(https://www.almaobservatory.org/en/home/) e California – USA (https://www.seti.org/ata).

Embora as técnicas de Array Processing possam ser (e são) igualmente aplicadas para sinais acústicos, com aplicações em SONAR, sismologia, e cancelamento de eco - para citar apenas algumas aplicações acústicas - o foco de nosso estudo é Array Processing no âmbito de sinais eletromagnéticos (EM). E neste contexto estaremos basicamente interessados em não somente processar os sinais recebidos por um array de antenas receptoras (RX) como também estaremos interessados em processar os sinais que alimentam um array de antenas transmissoras (TX). O objetivo de tal processamento depende da aplicação, conforme discutiremos adiante na solução dos exemplos do Cap II. Afortunadamente, o princípio da reciprocidade para elementos irradiantes antenas geral (ver https://en.wikipedia.org/wiki/Radiation_pattern#Reciprocity е em е https://en.wikipedia.org/wiki/Antenna_(radio)#Reciprocity), assevera que os parâmetros elétricos fundamentais de uma antena padrão de irradiação, diretividade (beamwidth) e impedâncias de entrada e mútuas - são os mesmos para as situações em que a antena opera tanto como TX tanto como RX. Então os conceitos e as técnicas de Array Processing são basicamente similares nas situações em que a antena opera como TX ou como RX.

A antena básica presente como elemento do *array* em grande parte dos *arrays* construídos é o dipolo simétrico, como também o monopolo *grounded*, derivado do dipolo simétrico (ver <u>https://en.wikipedia.org/wiki/Dipole_antenna</u>). Mesmo em um *array* de antenas de abertura, como os *arrays* para radio-astronomia, em algum ponto do alimentador de cada antena haverá um dipolo ou um monopolo para converter o modo de propagação da onda EM na abertura em um sinal elétrico amplificável no caso de recepção, e vice-versa no caso de transmissão (ver, por exemplo, <u>https://www.microwaves101.com/encyclopedias/waveguide-to-coax-transitions</u>).

Vamos então delimitar o escopo de nosso estudo e adotar a antena dipolo como elemento básico dos *arrays* que iremos estudar. Portanto, estudaremos *arrays* constituídos por um conjunto de dipolos espacialmente localizados em posições distintas no sistema de coordenadas *xyz* que define o espaço \mathbb{R}^3 , com a única restrição de que os dipolos sejam paralelos ao eixo *z*, conforme exemplo mostrado em (A) ao lado. Note que o *array* em (A) é constituído de dois dipolos I_0 e I_1 : o dipolo percorrido pela corrente I_0 com centro em (0,0,0) e o dipolo percorrido pela corrente I_1 com centro no ponto *q* em (*x'*, *y'*, *z'*). Os campos EM respectivamente irradiados pelos dipolos I_0 e I_1 se superpõe no ponto *p* de coordenada esférica (*r*, θ , ϕ), localizado na região do *farfield* do dipolo (região de campo distante do dipolo: $r > 10\lambda$ – ver pags 25 a 33 de http://www.fccdecastro.com.br/pdf/A_C2.pdf), gerando o campo elétrico resultante E_{θ} , conforme discutiremos adiante neste capítulo.

Comunicações Estratégicas

(0,0,0)

φ

(A)

 $\underline{V} \perp \psi$

r >> sr >> d

х

Cap II.1 – Fundamentos de Array Processing

 $p(r,\theta,\phi)$

 E_{θ}

u(x.y.z)

q(x',v',z')

Para efeito de determinar o comportamento de um *array* que adote um determinado tipo de antena como elemento, é necessário conhecer o parâmetros fundamentais padrão de irradiação, diretividade (ganho) e impedâncias de entrada e mútuas da antena usada como elemento do *array*.

Para determinar o padrão de irradiação de um dipolo cilíndrico de comprimento L e de diâmetro $d \ll L$ percorrido por uma corrente I(z) que varia senoidalmente com a coordenada z, conforme (A) abaixo, primeiramente precisamos determinar a componente E_{θ} do campo elétrico para todo e qualquer ponto $p(r, \theta, \phi)$ do espaço \mathbb{R}^3 para $r > 10\lambda$ (farfield). Em todo o desenvolvimento que fizermos neste capítulo assume-se que as tensões e correntes variam senoidalmente no tempo na forma $A \cos(\omega t + \theta)$, com $\omega = 2\pi f$, sendo sendo $\lambda = c/f$ o comprimento de onda na frequência de operação f.

Cap II.1 – Fundamentos de Array Processing

Comunicações Estratégicas

A componente H_{Φ} [A/m] do campo magnético sempre é perpendicular à componente E_{θ} [V/m] do campo elétrico e ambas as componentes E_{θ} e H_{ϕ} são perpendiculares ao raio vetor r. Na região de farfield ($r > 10\lambda$), que é a região de operação de qualquer enlace real e prático entre uma antena TX e uma antena RX, há uma relação simples entre $E_{ heta}$ e $H_{ heta}$ dada por $H_{ heta} = E_{ heta}/\eta$, onde $\eta =$ $\sqrt{\mu_0}/\varepsilon_0=$ 120 π [Ω] é a impedância do meio de propagação da onda EM (espaço livre), sendo $\mu_0 =$ $4\pi \times 10^{-7}$ [H/m] e $\varepsilon_0 = 8.85 \times 10^{-12}$ [F/m] respectivamente a permeabilidade magnética e a permissividade elétrica do espaço livre. Dada a relação de simples proporcionalidade com E_{θ} , a componente H_{Φ} é considerada ser de importância secundária.

A abordagem que adotaremos para determinar a componente E_{θ} em um ponto $p(r, \theta, \phi)$ do espaço \mathbb{R}^3 será considerar o dipolo cilíndrico de comprimento L como um *array* de dipolos elementares de comprimento ℓ infinitesimal distribuídos ao longo do comprimento L. Como os dipolos são de tamanho ℓ infinitesimal a superposição dos campos gerados por cada um deles será efetuada através de uma integral e não através de um somatório, conforme veremos no slide 10. A distribuição de corrente é considerada uniforme ao longo de cada dipolo elementar de comprimento infinitesimal ℓ . O comprimento ℓ é considerado infinitesimal quando $\ell \leq 0.1\lambda$. Um dipolo elementar (*Hertzian dipole*) é uma abstração do denominado dipolo curto (*short dipole* – ver <u>https://en.wikipedia.org/wiki/Dipole antenna</u>), que é um dipolo elementar isolado sem conexão elétrica com qualquer outro dipolo e, justamente por isto, a distribuição de corrente é uniforme ao longo de curto ou a dipolo elementar estaremos indistintamente nos referindo a um cilindro condutor de tamanho $\ell \leq 0.1\lambda$ com distribuição de corrente uniforme ao longo do comprimento ℓ .

A componente E_{θ} do campo elétrico de um dipolo elementar de comprimento $\ell \leq 0.1\lambda$ é obtida a partir das equações de Maxwell (ver <u>http://www.fccdecastro.com.br/pdf/EquacoesDeMaxwell%20-%20R01.pdf</u>), e está deduzida passo a passo nas paginas 1 a 27 de <u>http://www.fccdecastro.com.br/pdf/A_C2.pdf</u>, com resultado final para a região de *farfield* ($r > 10\lambda$) dado por:

$$E_{\theta} = 60\pi I_0 \left(\frac{\ell}{r\lambda}\right) e^{j\left(\omega t - \beta r + \frac{\pi}{2}\right)} \sin\theta \left[\frac{V}{m}\right]$$
(8)

$$p = 2\pi/\pi$$

 $H_{\Phi} = E_{\theta}/\eta$, onde $\eta = 120\pi [\Omega]$ (9)

 $\rho = 2\pi/2$

A corrente I(z) [A] ao longo do dipolo de tamanho L em (A) abaixo varia senoidalmente com a coordenada z em consequência da tensão de excitação V que varia senoidalmente no tempo. Isto ocorre porque as equações de Maxwell relacionam derivadas no tempo e no espaço dos campos E[V/m] e H[A/m], e como a derivada de uma variação senoidal também resulta senoidal, a corrente I(z) em (B) **precisa** ter a forma senoidal no espaço dada por (7) abaixo para que as derivadas no tempo e no espaço nas equações de Maxwell sejam compatíveis:

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

Da figura ao lado, podemos considerar cada segmento dz do dipolo fino de comprimento L como um dipolo curto de comprimento inifinitesimal $\ell = dz$ transportando uma corrente I(z), sendo I(z)definida por (7).

Cada dipolo infinitesimal de tamanho dz encontra-se a uma distância s do ponto p(x, y, z) e gera um campo elétrico $d\underline{E}$ em p(x, y, z). Portanto (8) pode ser re-escrita como:

$$dE_{\theta} = 60\pi I(z) \left(\frac{dz}{s\lambda}\right) e^{\int (\alpha z - \beta z + \frac{\pi}{2})} \operatorname{sen} \theta \qquad (10)$$

ou, integrando ambos os lados de (10):

$$E_{\theta} = \int dE_{\theta} = \frac{60\pi}{\lambda} \operatorname{sen} \theta \, e^{j\left(\omega x + \frac{\pi}{2}\right)} \int_{-L/2}^{L/2} \frac{1}{s} I(z) e^{-j\beta x} dz \quad (11)$$

$$I(z) = \begin{cases} I_0 \sin\left(\frac{2\pi}{\lambda}\left(\frac{L}{2} + z\right)\right) & p/z < 0\\ I_0 \sin\left(\frac{2\pi}{\lambda}\left(\frac{L}{2} - z\right)\right) & p/z \ge 0 \end{cases}$$
[A] (7)

 \longrightarrow Para Campo Distante $s \rightarrow r$ (ver figura ao lado) e (11) torna-se:

$$E_{\theta} = \int dE_{\theta} = \frac{60\pi}{\lambda} \sin\theta \, e^{j\left(\omega t + \frac{\pi}{2}\right)} \int_{-L/2}^{L/2} \frac{1}{r} I(z) e^{-j\beta t} dz \tag{12}$$

Nota: Observe que, apesar de $s \to r$ para Campo Distante, não consideramos s = r especificamente no fator $e^{-j\beta t}$ de (12) porque pequenas diferenças de fase são importantes na composição vetorial do campo distante \underline{E} em p(x, y, z).

Da figura ao lado temos que $s + z \cos \theta = r$. Dai, substituindo $s = r - z \cos \theta$ no fator $e^{-j\beta}$ de (12) temos:

$$E_{\theta} = \int dE_{\theta} = \frac{60\pi}{\lambda} \operatorname{sen} \theta \, e^{\int \left(\omega + \frac{\pi}{2} \right)} \int_{-L/2}^{L/2} \frac{1}{r} I(z) e^{-j\beta(r-z\cos\theta)} dz \qquad (13)$$

 \Rightarrow Mas como r independe de z, (13) é re-escrita como:

$$E_{\theta} = \int dE_{\theta} = \frac{60\pi}{r\lambda} \operatorname{sen} \theta \, e^{j\left(\omega t + \frac{\pi}{2}\right)} \int_{-L/2}^{L/2} I(z) e^{-j\beta(r - z\cos\theta)} dz \qquad (14)$$

Note que a passagem da equação (12) para (13) é semelhante à situação para recepção de ondas EM por um interferômetro discutida no slide 98 do Cap I.4, com a diferença que aqui estamos analisando a transmissão de ondas EM.

 \Rightarrow Substituindo (7) em (14):

$$E_{\theta} = \frac{60\pi}{r\lambda} \operatorname{sen} \theta e^{j\left(\alpha t - \beta r + \frac{\pi}{2}\right)} \begin{cases} \int_{-L/2}^{0} I(z)e^{j\beta z \cos\theta} dz + \\ \int_{0}^{L/2} I(z)e^{j\beta z \cos\theta} dz \end{cases} = \\ = \frac{I_{0}60\pi}{r\lambda} \operatorname{sen} \theta e^{j\left(\alpha t - \beta r + \frac{\pi}{2}\right)} \begin{cases} \int_{-L/2}^{0} \operatorname{sen}\left(\frac{2\pi}{\lambda}\left(\frac{L}{2} + z\right)\right)e^{j\beta z \cos\theta} dz + \\ \int_{0}^{L/2} \operatorname{sen}\left(\frac{2\pi}{\lambda}\left(\frac{L}{2} - z\right)\right)e^{j\beta z \cos\theta} dz \end{cases}$$
(15)

 $\implies \text{Mas como a constante de propagação é } \beta = 2\pi/\lambda \left[\frac{\text{rad}}{\text{m}}\right], (15) \text{ pode ser escrita como}$

$$E_{\theta} = \frac{I_0 60\pi}{r\lambda} \operatorname{sen} \theta \ e^{j\left(\omega t - \beta r + \frac{\pi}{2}\right)} \begin{cases} \int_{-L/2}^{0} e^{j\beta z \cos\theta} \operatorname{sen}\left(\beta\left(\frac{L}{2} + z\right)\right) dz + \\ \int_{0}^{L/2} e^{j\beta z \cos\theta} \operatorname{sen}\left(\beta\left(\frac{L}{2} - z\right)\right) dz \end{cases}$$

Comunicações Estratégicas

(16)

Mas,
$$\int e^{az} \sin(c+bz) dz = \frac{e^{az}}{a^2+b^2} [a \sin(c+bz) - b \cos(c+bz)]$$
 (17)

onde $a = j\beta z \cos\theta$, $b = \beta$ (ou $b = -\beta$ na segunda integral de (16)) e $c = \frac{\beta L}{2}$.

Efetuando as duas integrais de (16) com base em (17), multiplicando por sen θ e simplificando obtemos a expressão analitica para o Campo Distante de um Dipolo Linear Simétrico:

Comunicações Estratégicas

Prof Fernando DeCastro 13

<u>Nota</u>: Dividindo a equação (18) por $e^{j\omega t}$ convertemos a equação para sua forma fasorial (ver <u>https://en.wikipedia.org/wiki/Phasor</u>), e obtemos o fasor da componente E_{θ} do campo elétrico do dipolo.

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

Consideremos, por exemplo, um dipolo de tamanho $L = \lambda/2$ (dipolo de meia onda), alimentado em seus terminais por uma corrente I(z = 0) - ver equação (7) e figura (B) no slide anterior – de modo que a corrente máxima I₀ (denominada **corrente de radiação**) pode ser determinada de (7) a partir da corrente I(z = 0) dada. Vamos plotar o módulo de E_{θ} dado pela equação (18) para uma dada distância $r > 10\lambda$. Especificamente, se plotarmos $|E_{\theta}|$ normalizado em relação ao seu valor máximo (ver pags 6 a 9 de <u>http://www.fccdecastro.com.br/pdf/A_C3.pdf</u>) em um gráfico polar 3D para 0° $\leq \phi < 360^{\circ} \in 0^{\circ} \leq \theta \leq 180^{\circ}$, obtemos o gráfico do padrão de irradiação (= diagrama de irradiação) mostrado em (A) abaixo. Se fizermos a intersecção da superfície 3D de $|E_{\theta}|$ em (A) com plano o que contém as linhas do campo H (lembre que as linhas de H são concêntricas ao fio do dipolo conforme <u>http://www.fccdecastro.com.br/pdf/EquacoesDeMaxwell%20-%20R01.pdf</u>), obtemos o gráfico polar 2D "plano H" mostrado em (B).

Se fizermos a intersecção da superfície 3D de $|E_{\theta}|$ em (A) com o plano que contém as linhas do campo E obtemos o gráfico polar 2D "plano E" mostrado em (B). Lembre que as linhas de E estão sempre alinhadas com o movimento das cargas elétricas. Como as cargas elétricas estão se movendo ao longo do fio do dipolo, então o "plano E" deve conter o fio do dipolo em verdadeira grandeza. Ver https://en.wikipedia.org/wiki/E-plane and Hplane#E-Plane .

Importante notar que a corrente I_0 na equação (18) é o valor da corrente de radiação I_0 mostrada em (A) abaixo, que corresponde ao valor máximo da corrente ao longo da coordenada z. À medida que o tamanho L do dipolo aumenta em relação ao comprimento de onda λ mais máximos I_0 ocorrerão ao longo do fio, em consonância com a equação (7). A corrente de entrada $I_i = I(z = 0)$ relaciona-se com a corrente de radiação I_0 através da equação (7) p/z = 0 e resulta em:

Igualmente importante notar que a impedância de entrada Z_i do dipolo é a razão entre a tensão V_i nos terminais do dipolo e a corrente I_i que entra no terminal "+", conforme mostrado em (A) abaixo. Alternativamente, Z_i pode ser determinado pela razão entre a tensão V_{oc} medida a circuito aberto nos terminais do dipolo e a corrente I_{sc} medida entre os terminais quando eles estão curto-circuitados (ver <u>https://en.wikibooks.org/wiki/Electronics/Thevenin/Norton_Equivalents</u>).

De mesma forma, a impedância de radiação Z_r do dipolo é a razão entre a tensão V_0 medida entre os terminais que se formam quando se abre o fio do dipolo na posição z_{max} onde ocorre o valor máximo I_0 da corrente e o valor I_0 da corrente de radiação medido em z_{max} , conforme mostrado em (A) abaixo.

Observe que em qualquer antena prática o fio do dipolo é um bom condutor elétrico e os isoladores que sustentam mecanicamente a antena são bons dielétricos. Então as perdas Joule e as perdas dielétricas são desprezíveis e as potências útil e reativa são conservadas ao longo do dipolo. Neste contexto, temos que $R_r I_0^2 = R_i I_i^2$ e que $X_r I_0^2 = X_i I_i^2$, e usando (33) nestas duas relações obtemos: \mathcal{Y} Para p(x,y,z)

Há vários métodos para se determinar impedância de entrada $Z_i = R_i + jX_i$ de um dipolo e, consequentemente, determinar a impedância de radiação $Z_r = R_r + jX_r$ através de (35) e (38). Os métodos numéricos baseados em elementos finitos são os mais versáteis e há diversos (e poderosos) softwares disponíveis neste sentido (ver , por exemplo, <u>https://www.eznec.com/eznecpro.htm</u>, <u>https://www.ansys.com/products/electronics/antennas</u> e <u>https://www.3ds.com/products-services/simulia/products/cst-studio-suite/</u>).</u>

Mas em nosso estudo estaremos interessados em determinar analiticamente o comportamento eletromagnético de um *array* constituído de dipolos, e, portanto, estaremos interessados em métodos e modelos analíticos para que seja viabilizada a análise do comportamento eletromagnético do dipolo como elemento do *array*.

Há vários métodos analíticos clássicos para se determinar impedância de entrada $Z_i = R_i + jX_i$ de um dipolo cilíndrico (ver <u>http://www.fccdecastro.com.br/pdf/TCACOT.pdf</u>). Dentre estes métodos, adotaremos em nosso estudo o método de Schellkunoff (<u>http://www.fccdecastro.com.br/pdf/SCHELKBIO.pdf</u>), método que é baseado na transformação geométrica de um dipolo bicônico em um dipolo cilíndrico (<u>http://www.fccdecastro.com.br/pdf/TCACOT.pdf</u>).

Em <u>http://www.fccdecastro.com.br/ZIP/ZDipoles_SymmetricalFeeding.zip</u> estão disponibilizados os *scripts* Zi_CyDip.mcd e Zm_CyPDS.mcd para o software MathCad, ambos baseados no método de Schellkunoff.

O *script* Zi_CyDip.mcd determina impedância de entrada $Z_i = R_i + jX_i$ de um dipolo de comprimento "Length" [m], raio do fio "Radius" [mm] e que opera em uma frequência cujo comprimento de onda é λ [m], conforme (A) abaixo:

O uso da função Zin_Schelkunoff (Radius, λ, Length) é mostrado nos *test cases* ao final do *script* Zi_CyDip.mcd. Ver também Apêndice I e Apêndice III no Cap II.5.

Conforme veremos adiante, de crucial importância para a análise do comportamento eletromagnético de um *array* é o acoplamento mútuo entre os seus elementos, dado que o *near-field* (campo próximo - ver <u>https://en.wikipedia.org/wiki/Near_and_far_field</u>) de cada elemento acopla entre si todos os elementos do *array* em consequência da proximidade física entre eles. Conforme discutido no slide 6, os *arrays* que estamos estudando são constituídos por dipolos paralelos ao eixo *z*, portanto o acoplamento mútuo entre eles é através do campo magnético.

Neste contexto o *script* Zm_CyPDS.mcd determina a impedância mútua $Z_{12} = R_{12} + jX_{12}$ entre o "dipolo 1" de comprimento "Length1" [m] com raio do fio "Radius1" [mm] e o "dipolo 2" de comprimento "Length2" [m] com raio do fio "Radius2" [mm], ambos os dipolos paralelos e separados de uma distância "Spacing" [m] entre seus centros e operando em uma frequência cujo comprimento de onda é λ [m], conforme (A) abaixo.

 Z_{12} é a impedância mútua entre o "dipolo 1" e o "dipolo 2", impedância que define o valor da fonte de tensão $Z_{12}I_2$ que surge em série com o fio do "dipolo 1" em consequência do campo magnético gerado pela corrente I_2 que percorre o "dipolo 2". O campo magnético gerado pela corrente I_2 se propaga até as vizinhanças do "dipolo 1" induzindo neste dipolo a tensão $Z_{12}I_2$.

 $V1 = Z_{11} \cdot I1 + Z_{12} \cdot I2$ $V2 = Z_{21} \cdot I1 + Z_{22} \cdot I2$

(ver https://pt.wikipedia.org/wiki/Quadripolo)

O uso da função ZMutual_Schelkunoff(Length1,Length2,Radius1,Radius2,Spacing,λ) é mostrado nos *test cases ao final* do *script* Zm_CyPDS.mcd. Ver também Apêndice II e Apêndice III no Cap II.5.

Exemplo 1: Um *array* opera na frequência de 7.5MHz e é constituído de dois dipolos conforme mostrado em (A) abaixo, com parâmetros geométricos dados por: $L_0 = \lambda/4$, $L_1 = \lambda/2$, $r_0 = 0.0001\lambda$ e $r_1 = 0.0002\lambda$. Cada dipolo é alimentado por uma linha de transmissão (LT) sem perdas, casada com a impedância de entrada do respectivo dipolo através de um acoplador de impedâncias. As LTs são também casadas através de respectivos acopladores com a impedância do gerador senoidal comum que alimenta simultaneamente a ambas. Através da LT e do acoplador o gerador alimenta os terminais do "dipolo 1" com uma tensão $V_1 = 10V$. O comprimento da LT que alimenta o "dipolo 0" é $\lambda/2$ maior que o comprimento da LT que alimenta o "dipolo 1" de modo que a tensão nos terminais do "dipolo 0" resulta de mesma magnitude de V_1 mas defasada de 180°, i.e., $V_0 = V_1 e^{j180°}$ (lembre da disciplina de Ondas e Linhas que a constante de propagação de uma onda EM é $\beta = 2\pi/\lambda$ [rad/m] e isto significa que a onda gira sua fase 180° ao se propagar por um caminho de comprimento $\lambda/2$).

Pede-se: Sabendo que a distância d entre os dipolos é **(a)** $d = 0.1 \lambda$ e **(b)** $d = 10\lambda$ determine as correntes de entrada I_1 e I_0 e as impedâncias de entrada Z_{in1} e Z_{in0} . Analise comparativamente os resultados obtidos em (a) e (b).

O *script* do software MathCad utilizado como auxilio na solução deste exemplo está disponível em <u>http://www.fccdecastro.com.br/ZIP/E1S20.zip</u>.

Nota – Um bom resumo de linhas de transmissão: <u>http://www.antenna-theory.com/tutorial/txline/transmissionline.php#txline</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission2.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission3.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission3.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission3.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission3.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission3.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission5.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission5.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission5.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission5.php</u>, <u>http://www.antenna-theory.com/tutorial/txline/transmission6.php</u>.

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

Prof Fernando DeCastro 20

Solução:

(a) Do enunciado:

 $f := 7.5 \cdot MHz \rightarrow \lambda := \frac{c}{f} = 39.972m$ $d := 0.1 \cdot \lambda = 3.997m$ $V1 := 10 \cdot V$ $V0 := V1 \cdot e^{-j \cdot 180^{\circ}} = -10 \cdot V$

$$L0 := \frac{\lambda}{4} = 9.993m \qquad r0 := 0.0001 \cdot \lambda = 3.997 \cdot mm \qquad \text{indice } 0 \to \text{dipolo } 0$$
$$L1 := \frac{\lambda}{2} = 19.986 \text{ m} \qquad r1 := 0.0002 \cdot \lambda = 7.994 \cdot mm \qquad \text{indice } 1 \to \text{dipolo } 1$$

Comprimento dos dipolos: Raio do fio dos dipolos: Coordenada do centro do dipolos:

$$\underset{m}{\text{Li}} = \begin{pmatrix} 1.0 \\ 1.1 \end{pmatrix} = \begin{pmatrix} 9.993 \\ 19.986 \end{pmatrix} \text{m} \qquad \qquad \underset{m}{\text{Ri}} = \begin{pmatrix} r0 \\ r1 \end{pmatrix} = \begin{pmatrix} 3.997 \\ 7.994 \end{pmatrix} \text{mm} \qquad \qquad \underset{m}{\text{Ci}} = \begin{pmatrix} -d & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -3.997 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{m} \qquad \begin{array}{c} \text{indice } 0 \to \text{dipolo } 0 \\ \text{indice } 1 \to \text{dipolo } 1 \end{array}$$

Índices a e b para os K dipolos do array:

 $K := \text{length}(L) = 2 \qquad a := 0 .. K - 1 \rightarrow a =$ $b := 0 \dots K - 1 \rightarrow b =$

Distâncias S_{a,b} entre os centros dos dipolos a e b:

$$S_{\mathbf{a},\mathbf{b}} := \sqrt{\left[\left(\mathbf{C}^{\langle 0 \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle 0 \rangle}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{\langle 1 \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle 1 \rangle}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{\langle 2 \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle 2 \rangle}\right)_{\mathbf{b}}\right]^{2}} \rightarrow S = \begin{pmatrix} 0 & 3.997 \\ 3.997 & 0 \end{pmatrix} \mathbf{m}$$

Se os índices a e b são iguais (a=b) determina a impedância própria $Z_{a,a}$, e se forem diferentes determina a impedância mútua $Z_{a,b}$:

 $Z_{a,b} := if\left(a = b, Zin_Schelkunoff\left(\frac{R_a}{mm}, \frac{\lambda}{m}, \frac{L_a}{m}\right), ZMutual_Schelkunoff\left(\frac{L_a}{m}, \frac{L_b}{m}, \frac{R_a}{mm}, \frac{R_b}{mm}, \frac{S_{a,b}}{m}, \frac{\lambda}{m}\right)\right)$

Matriz impedância Z entre os dipolos (como há K = 2 dipolos no array então a matriz Z é de tamanho rows(Z) = 2 x cols(Z) = 2):

 $Z00 \rightarrow$ Impedância própria do dipolo 0 = razão V0/I0 obtida p/ a situação em que o dipolo 0 está no espaço livre separado de uma distância *d* infinita do dipolo 1 (determinada através da função Zin_Schelkunoff).

 $Z01 \rightarrow$ Impedância mútua entre os dipolos 0 e 1 = razão V0/I1 obtida p/ a situação em que os dipolos 0 e 1 estão no espaço livre separados entre si de uma distância d = 3.997 m determinada através da função ZMutual_Schelkunoff).

 $Z = \begin{pmatrix} Z00 & Z01 \\ Z10 & Z11 \end{pmatrix}$

 $Z10 \rightarrow$ Impedância mútua entre os dipolos 1 e 0 = razão V1/I0 obtida p/ a situação em que os dipolos 0 e 1 estão no espaço livre separados entre si de uma distância d = 3.997 m (determinada através da função ZMutual_Schelkunoff).

 $Z11 \rightarrow$ Impedância própria do dipolo 1 = razão V1/I1 obtida p/ a situação em que o dipolo 1 está no espaço livre separado de uma distância *d* infinita do dipolo 0 (determinada através da função Zin_Schelkunoff).

A matriz impedância z entre os dipolos resulta em:

 $Z = \begin{pmatrix} 11.7151 - 730.7403i & 27.5064 - 27.6814i \\ 27.7163 - 55.4401i & 75.0641 + 43.67i \end{pmatrix} \cdot \Omega$

Considerando os terminais dos dois dipolos como um quadripolo (ver https://pt.wikipedia.org/wiki/Quadripolo), a relação matricial entre tensões e correntes nos dois dipolos é:

$$\begin{pmatrix} \mathbf{v}\mathbf{0} \\ \mathbf{v}\mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{z}_{00} & \mathbf{z}_{01} \\ \mathbf{z}_{10} & \mathbf{z}_{11} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I}\mathbf{0} \\ \mathbf{I}\mathbf{1} \end{pmatrix}$$

Convertendo a relação matricial para um sistema de equações:

$$V0 = Z_{00} \cdot I0 + Z_{01} \cdot I1$$
$$V1 = Z_{10} \cdot I0 + Z_{11} \cdot I1$$

Note que a tensão nos terminais do dipolo $0 \notin v_0 = Z_{00} \cdot I_0 + Z_{01} \cdot I_1$ e que a parcela $Z_{01} \cdot I_1$ da tensão v_0 se origina do campo magnético gerado pela corrente II que percorre o dipolo 1. O campo magnético gerado pela corrente II se propaga até as vizinhanças do dipolo 0 induzindo neste dipolo a tensão $Z_{01} \cdot I_1$.

De mesma forma, a tensão nos terminais do dipolo 1 é V1 = Z_{10} ·I0 + Z_{11} ·I1 e a parcela Z_{10} ·I0 da tensão V1 se origina do campo magnético gerado pela corrente I0 que percorre o dipolo 0. O campo magnético gerado pela corrente I0 se propaga até as vizinhanças do dipolo 1 induzindo neste dipolo a tensão Z_{10} ·I0.

Formando o vetor das tensões nos terminais dos K = 2 dipolos do array:

$$\mathbf{V}_{-} := \begin{pmatrix} \mathbf{V}\mathbf{0} \\ \mathbf{V}\mathbf{1} \end{pmatrix} = \begin{pmatrix} -\mathbf{1}\mathbf{0} \\ \mathbf{1}\mathbf{0} \end{pmatrix} \cdot \mathbf{V}$$

Invertendo a matriz impedância z e multiplicando pelo vetor $V_que define as tensões nos terminais dos K = 2 dipolos do$ *array*, obtemos as correntes que entram nos terminais positivos de cada dipolo do*array*:

$$\begin{bmatrix} 10\\ 11\\ 11\\ 11\\ 11\\ 110.136 - 63.444i \end{bmatrix} \cdot \mathbf{mA}$$

Obtendo as impedâncias de entrada $Z_{in1} \in Z_{in0}$ e comparando com as respectivas impedâncias de entrada $Z_{1,1} \in Z_{0,0}$ que os dipolos exibiriam caso estivessem distantes entre si de uma distância *d* infinita:

$$\operatorname{Zin1} := \frac{\operatorname{V1}}{\operatorname{I1}} = (68.174 + 39.272i) \cdot \Omega \quad \longleftrightarrow \quad \operatorname{Z}_{1,1} = (75.064 + 43.67i) \cdot \Omega$$

 $\operatorname{Zin0} := \frac{\operatorname{V0}}{\operatorname{I0}} = (242.234 - 545.201i) \cdot \Omega \iff Z_{0,0} = (11.715 - 730.74i) \cdot \Omega$

(b) Utilizando o *script* MathCad referido no enunciado (slide 20) utilizado para a solução de (a), mas agora com $d = 10\lambda$:

Invertendo a matriz impedância z e multiplicando pelo vetor V_que define as tensões nos terminais dos K = 2 dipolos do *array*, obtemos as correntes que entram nos terminais positivos de cada dipolo do *array*:

$$\begin{pmatrix} I0\\I1\\I1 \end{pmatrix} := Z^{-1} \cdot V_{-} = \begin{pmatrix} -0.204 - 13.693i\\99.521 - 57.895i \end{pmatrix} \cdot mA$$

Obtendo as impedâncias de entrada $z_{1,1}$ e $z_{0,0}$ que os dipolos exibiriam caso estivessem distantes entre si de uma distância *d* infinita:

$$Zin1 := \frac{V1}{I1} = (75.075 + 43.674i) \cdot \Omega \quad \Longleftrightarrow \quad Z_{1,1} = (75.064 + 43.67i) \cdot \Omega$$
$$Zin0 := \frac{V0}{I0} = (10.864 - 730.123i) \cdot \Omega \quad \Longleftrightarrow \quad Z_{0,0} = (11.715 - 730.74i) \cdot \Omega$$

Nota-se, portanto, que à medida que a distância *d* entre os dipolos aumenta, o campo magnético gerado pela corrente em cada dipolo reduz a tensão induzida no outro dipolo em consequência da maior distância e, por este motivo, a impedância de entrada de cada dipolo tende à impedância que o dipolo exibiria se estivesse sozinho e isolado no espaço livre.

Exemplo 2: Um dipolo denominado "dipolo 1" opera na frequência de 7.5MHz com parâmetros geométricos dados por $L_1 = \lambda/2$, e $r_1 = 0.0002\lambda$ conforme mostrado em (A) abaixo. A uma distância d do "dipolo 1" encontra-se situado o "dipolo 0", com parâmetros geométricos dados por: $L_0 = \lambda/4$ e $r_0 = 0.0001\lambda$. O "dipolo 1" é alimentado por uma linha de transmissão (LT) sem perdas, casada com a impedância de entrada do dipolo através de um acoplador de impedâncias. A LT é também casada através de acoplador com a impedância do gerador senoidal que alimenta a ela. Através da LT e do acoplador o gerador alimenta os terminais do "dipolo 1" com uma tensão $V_1 = 10V$. O "dipolo 0" é simplesmente um tubo metálico com as dimensões L_0 e r_0 dadas acima, i.e., não há terminais de alimentação conforme mostrado em (A). Portanto, equivalentemente, podemos considerar que a tensão nos terminais de alimentação do "dipolo 0" é $V_0 = 0$ [V].

Pede-se: Sabendo que a distância d entre os dipolos é **(a)** $d = 0.1 \lambda$ e **(b)** $d = 10\lambda$ determine a corrente de entrada I_1 , a impedância de entrada Z_{in1} , ambas do "dipolo 1", e a corrente I_0 no centro do "dipolo 0". Analise comparativamente os resultados obtidos em (a) e (b).

O script do software MathCad utilizado como auxilio na solução deste exemplo está disponível em http://www.fccdecastro.com.br/ZIP/E2S25.zip .

Solução:

Do enunciado: (a)

> $f := 7.5 \cdot MHz \rightarrow \lambda := \frac{c}{f} = 39.972m$ $d := 0.1 \cdot \lambda = 3.997m$ $V1 := 10 \cdot V$

$$L0 := \frac{\lambda}{4} = 9.993 \text{m} \qquad r0 := 0.0001 \cdot \lambda = 3.997 \cdot \text{mm} \qquad \text{indice } 0 \rightarrow \text{dipolo } 0$$
$$L1 := \frac{\lambda}{2} = 19.986 \text{ m} \qquad r1 := 0.0002 \cdot \lambda = 7.994 \cdot \text{mm} \qquad \text{indice } 1 \rightarrow \text{dipolo } 1$$

Comprimento dos dipolos: Raio do fio dos dipolos: Coordenada do centro do dipolos:

 $V0 := 0 \cdot V$

$$\underset{m}{\text{Li}} = \begin{pmatrix} 1.0 \\ 1.1 \end{pmatrix} = \begin{pmatrix} 9.993 \\ 19.986 \end{pmatrix} \text{m} \qquad \qquad \underset{m}{\text{Ri}} := \begin{pmatrix} r0 \\ r1 \end{pmatrix} = \begin{pmatrix} 3.997 \\ 7.994 \end{pmatrix} \text{mm} \qquad \qquad \underset{m}{\text{Ci}} := \begin{pmatrix} -d & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} -3.997 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{m} \qquad \begin{array}{c} \text{indice } 0 \to \text{dipolo } 0 \\ \text{indice } 1 \to \text{dipolo } 1 \end{array}$$

Índices a e b para os K dipolos do array:

 $K := \text{length}(L) = 2 \qquad a := 0 .. K - 1 \rightarrow a =$ $b := 0 \dots K - 1 \rightarrow b =$ 0

Distâncias S_{a,b} entre os centros dos dipolos a e b:

$$S_{\mathbf{a},\mathbf{b}} := \sqrt{\left[\left(\mathbf{C}^{\langle 0 \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle 0 \rangle}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{\langle 1 \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle 1 \rangle}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{\langle 2 \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle 2 \rangle}\right)_{\mathbf{b}}\right]^{2}} \rightarrow S = \begin{pmatrix} 0 & 3.997 \\ 3.997 & 0 \end{pmatrix} \mathbf{m}$$

Se os índices a e b são iguais (a=b) determina a impedância própria $Z_{a,a}$, e se forem diferentes determina a impedância mútua $Z_{a,b}$:

$$Z_{a,b} := if\left(a = b, Zin_Schelkunoff\left(\frac{R_a}{mm}, \frac{\lambda}{m}, \frac{L_a}{m}\right), ZMutual_Schelkunoff\left(\frac{L_a}{m}, \frac{L_b}{m}, \frac{R_a}{mm}, \frac{R_b}{mm}, \frac{S_{a,b}}{m}, \frac{\lambda}{m}\right)\right)$$

Matriz impedância Z entre os dipolos (como há K = 2 dipolos no array então a matriz Z é de tamanho rows(Z) = 2 x cols(Z) = 2):

 $Z00 \rightarrow$ Impedância própria do dipolo 0 = razão V0/I0 obtida p/ a situação em que o dipolo 0 está no espaço livre separado de uma distância *d* infinita do dipolo 1 (determinada através da função Zin_Schelkunoff).

 $Z01 \rightarrow$ Impedância mútua entre os dipolos 0 e 1 = razão V0/I1 obtida p/ a situação em que os dipolos 0 e 1 estão no espaço livre separados entre si de uma distância d = 3.997 m determinada através da função ZMutual_Schelkunoff).

 $Z10 \rightarrow$ Impedância mútua entre os dipolos 1 e 0 = razão V1/I0 obtida p/ a situação em que os dipolos 0 e 1 estão no espaço livre separados entre si de uma distância d = 3.997 m (determinada através da função ZMutual_Schelkunoff).

 $Z11 \rightarrow$ Impedância própria do dipolo 1 = razão V1/I1 obtida p/ a situação em que o dipolo 1 está no espaço livre separado de uma distância *d* infinita do dipolo 0 (determinada através da função Zin_Schelkunoff).

A matriz impedância z entre os dipolos resulta em:

 $Z = \begin{pmatrix} 11.7151 - 730.7403i & 27.5064 - 27.6814i \\ 27.7163 - 55.4401i & 75.0641 + 43.67i \end{pmatrix} \cdot \Omega$

 $Z = \begin{pmatrix} Z00 & Z01 \\ Z10 & Z11 \end{pmatrix}$

Considerando os terminais dos dois dipolos como um quadripolo (ver https://pt.wikipedia.org/wiki/Quadripolo), a relação matricial entre tensões e correntes nos dois dipolos é:

 $\begin{pmatrix} \mathbf{V0} \\ \mathbf{V1} \end{pmatrix} = \begin{pmatrix} \mathbf{Z}_{00} & \mathbf{Z}_{01} \\ \mathbf{Z}_{10} & \mathbf{Z}_{11} \end{pmatrix} \cdot \begin{pmatrix} \mathbf{I0} \\ \mathbf{I1} \end{pmatrix}$

Convertendo a relação matricial para um sistema de equações:

 $V0 = Z_{00} \cdot I0 + Z_{01} \cdot I1$ $V1 = Z_{10} \cdot I0 + Z_{11} \cdot I1$

Note que a tensão nos terminais do dipolo $0 \notin V_0 = Z_{00} \cdot I_0 + Z_{01} \cdot I_1$ e que a parcela $Z_{01} \cdot I_1$ da tensão V_0 se origina do campo magnético gerado pela corrente II que percorre o dipolo 1. O campo magnético gerado pela corrente II se propaga até as vizinhanças do dipolo 0 induzindo neste dipolo a tensão $Z_{01} \cdot I_1$.

De mesma forma, a tensão nos terminais do dipolo 1 é V1 = Z_{10} ·I0 + Z_{11} ·I1 e a parcela Z_{10} ·I0 da tensão V1 se origina do campo magnético gerado pela corrente I0 que percorre o dipolo 0. O campo magnético gerado pela corrente I0 se propaga até as vizinhanças do dipolo 1 induzindo neste dipolo a tensão Z_{10} ·I0.

Formando o vetor das tensões nos terminais dos K = 2 dipolos do array:

$$\mathbf{V}_{-} := \begin{pmatrix} \mathbf{V}\mathbf{0} \\ \mathbf{V}\mathbf{1} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \\ \mathbf{10} \end{pmatrix} \cdot \mathbf{V}$$

Invertendo a matriz impedância z e multiplicando pelo vetor V_{que} define as tensões nos terminais dos K = 2 dipolos do *array*, obtemos as correntes que entram nos terminais positivos de cada dipolo do *array*:

$$\begin{pmatrix} I0\\I1\\I1 \end{pmatrix} := Z^{-1} \cdot V_{-} = \begin{pmatrix} -6.163 - 1.31i\\100.187 - 62.354i \end{pmatrix} \cdot mA$$

Obtendo a impedância de entrada z_{in1} e comparando com a impedância de entrada $z_{1,1}$ que o dipolo 1 exibiria caso estivesse distante do dipolo 0 de uma distância *d* infinita:

$$Zin1 := \frac{V1}{I1} = (71.945 + 44.777i) \cdot \Omega \quad \longleftrightarrow \quad Z_{1,1} = (75.064 + 43.67i) \cdot \Omega$$

(b) Utilizando o *script* MathCad referido no enunciado (slide 25), utilizado para a solução de (a), mas agora com $d = 10\lambda$:

Invertendo a matriz impedância z e multiplicando pelo vetor V_que define as tensões nos terminais dos K = 2 dipolos do *array*, obtemos as correntes que entram nos terminais positivos de cada dipolo do *array*:

$$\begin{pmatrix} I0\\II\\II\\II \end{pmatrix} := Z^{-1} \cdot V_{-} = \begin{pmatrix} 0.016 - 0.012i\\99.532 - 57.905i \end{pmatrix} \cdot mA$$

Obtendo a impedância de entrada Z_{in1} e comparando com a impedância de entrada $Z_{1,1}$ que o dipolo 1 exibiria caso estivesse distante do dipolo 0 de uma distância *d* infinita:

$$\operatorname{Zin1} := \frac{\operatorname{V1}}{\operatorname{I1}} = (75.064 + 43.67i) \cdot \Omega \qquad \longleftrightarrow \qquad \operatorname{Z}_{1,1} = (75.064 + 43.67i) \cdot \Omega$$

Nota-se, portanto, apesar do "dipolo 0" não ser excitado por um par de terminais, à medida que a distância *d* entre os dipolos aumenta, o campo magnético gerado pela corrente em cada dipolo reduz a tensão induzida no outro dipolo em consequência da maior distância. Isto faz com que, à medida que *d* aumenta, a impedância de entrada Zin1 do dipolo 1 tenda à impedância que o dipolo exibiria se estivesse sozinho e isolado no espaço livre. Importante notar que embora o "dipolo 0" não seja excitado por um par de terminais ele recebe excitação do campo magnético do "dipolo 1". Neste contexto, este é um *array* em que um dos seus elementos (o "dipolo 0") é passivo. Estudaremos *arrays* de elementos passivos (ou parasitas) mais adiante no Cap II. Os próximos slides resumem e sistematizam as técnicas para determinação da corrente em cada dipolo de um *array* com 6 dipolos (mas valem para qualquer número de dipolos) para 3 situações operacionais usuais de *arrays*. Estas 3 técnicas serão utilizadas nos exemplos que veremos adiante no Cap II.

Determinando as correntes dos dipolos de um array

(I) Determinando as correntes em um array de dipolos ativos

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

(b) Array genérico com 6 dipolos

Determinando as correntes dos dipolos de um array

(II) Determinando as correntes em um array de dipolos passivos

(b) Array genérico com 6 dipolos perpendiculares ao plano xy (paralelos ao eixo z). Um único dipolo D_e é alimentado e é conforme o dipolo mostrado em (a). Os demais dipolos D_k, com k ≠ e, são geometricamente conforme mostrado em (a), exceto que não há gerador (terminais da tensão V_k é curto-circuitado). As coordenadas do centro de cada dipolo D_k é (x_k, y_k, z_k).

Os demais dipolos distintos do dipolo excitador D_e são passivos (não são conectados a qualquer gerador externo), sendo alimentados através do acoplamento em *near field* (indutância mútua) entre o dipolo excitador D_e e os demais dipolos D_k para $k \neq e$. Neste caso procede-se da seguinte forma:

Definir o vetor <u>V</u>, cujos elementos são as tensões V_k, fazendo V_k = 0 para k ≠ e e V_k = V_e =1.0 [volt] para k = e.

2a

- Obter o vetor <u>I</u> por <u>I</u>=M⁻¹<u>V</u>, cujos elementos são as correntes i_k (i_e é uma das correntes i_k obtidas).
- Obter $Z_e=1.0 \text{ [volt]}/\dot{i}_e$ e isolar $|\dot{i}_e|$ em $P_e=\text{Re}\{Z_e\}|\dot{i}_e|^2$.
- Redefinir o vetor $\underline{\mathbf{V}}$ fazendo $\mathcal{V}_e = Z_e | \dot{\mathbf{i}}_e |$ e demais $\mathcal{V}_k = 0$ para $k \neq e$.
- Obter \mathbf{i}_k por $\mathbf{I} = \mathbf{M}^{-1}\mathbf{V}$.

Determinando as correntes dos dipolos de um array

(III) Determinando as correntes em um array de dipolos imagens

A diretividade D de uma antena expressa o quanto a antena focaliza energia eletromagnética na direção do *boresight*. A diretividade D é equivalente ao ganho $G = \xi D$ da antena quando a eficiência ξ da antena é unitária (100%), significando que as perdas Joule e as perdas dielétricas são desprezíveis na antena, o que é verdadeiro para a grande maioria dos casos práticos. Portanto, adotaremos G = D neste estudo.

Por exemplo, consideremos uma antena alimentada pelo TX com uma potência P, conforme mostrado em (A) abaixo. A potência P entregue à antena estabelece correntes elétricas na estrutura geométrica de condutores que constituem os elementos irradiantes da antena, e cada elemento irradiante propaga uma onda EM até o ponto $p(r, \theta, \phi)$ do espaço \mathbb{R}^3 . Estas ondas se superpõe no ponto $p(r, \theta, \phi)$ gerando a componente resultante $E_{\theta}(r, \theta, \phi)$ [V/m] mostrada em (A) abaixo. Vamos supor que P = 100[W], que a antena tenha um ganho G = 17[dB] na direção do *boresight* e que a distância da antena até o ponto p seja r = 20 [km]. Isto faz com que um "observador" no ponto $p(r, \theta = 90^\circ, \phi = 0^\circ)$ "olhando" na direção da antena tenha a "percepção" de que a potência efetivamente irradiada (*Effective Radiated Power*) seja $\text{ERP} = P \ 10^{\frac{G}{10}} = 5.01$ [KW], onde $10^{\frac{G}{10}}$ é o ganho de potência multiplicativo da antena.

É de crucial importância notar que a antena não amplifica ativamente a potência P, porque não há qualquer amplificador ativo na antena que justifique amplificar 100[W] para 5.01 [KW]. A antena apenas focaliza como uma lente óptica a onda EM na direção do *boresight* de modo que as ondas irradiadas pelos elementos irradiantes da antena se interfiram construtivamente no ponto $p(r, \theta = 90^\circ, \phi = 0^\circ)$. Não há qualquer energia sendo "criada do nada" porque os 100[W] do TX são amplificados para 5.01 [KW] na direção do *boresight* às custas de potência da onda EM sendo subtraída nas demais direções, conforme mostra o diagrama de irradiação na cor magenta em (A) abaixo.

A interpretação no parágrafo anterior nos leva à seguinte questão: Se o ganho de uma antena é diretamente proporcional à capacidade da antena focalizar energia em uma determinada direção, qual seria a antena que define a situação operacional em que a antena irradia uniformemente em todas as direções (θ, ϕ) do espaço \mathbb{R}^3 , não focalizando energia em qualquer direção particular? Isto nos leva ao conceito de **antena isotrópica**, usada universalmente como referência para caracterizar o ganho G = 0 [dB] (ganho multiplicativo 1.0 sobre a potencia do TX), conforme veremos no próximo slide.

Uma **antena isotrópica** é uma antena que irradia uniformemente em todas as direções (θ, ϕ) do espaço \mathbb{R}^3 , não focalizando energia em qualquer direção particular. Não há direção específica para o *boresight*, conforme mostra o diagrama de irradiação na cor magenta em (A) abaixo, que é uma superfície esférica no espaço \mathbb{R}^3 . Portanto, o *boresight* aponta para todas as direções angulares possíveis do espaço \mathbb{R}^3 , representando um ângulo sólido de $4\pi[rad^2]$ - ver <u>https://en.wikipedia.org/wiki/Solid angle</u>. A potência *P* entregue pelo TX à antena isotrópica é transportada nas frentes de onda da onda EM uniformemente irradiada pela antena em todas as direções (θ, ϕ) . A onda EM irradiada se propaga no espaço \mathbb{R}^3 até a superfície da esfera de raio *r* indicada pela linha tracejada verde em (A), em cuja superfície encontra-se o ponto $p(r, \theta = 90^\circ, \phi = 0^\circ)$ onde deseja-se determinar a componente E_{θ} do campo elétrico que surge no ponto *p* em consequência da potência *S* = $P/(4\pi r^2)$ [W/m²] que é constante ao longo de toda a superfície de raio *r* porque a antena isotrópica irradia uniformemente em todas as direções (θ, ϕ) do espaço \mathbb{R}^3 , onde $4\pi r^2 \overset{\circ}{\xi}$ a área da esfera de raio *r*.

 $\frac{1}{2\eta} \left| \hat{\underline{r}} E_{\theta} E_{\theta}^{*} \right| = \frac{1}{2\eta} \left| \underline{\hat{r}} \right| E_{\theta} E_{\theta}^{*} = \frac{1}{2\eta} E_{\theta} E_{\theta}^{*} = \frac{|E_{\theta}|^{2}}{2\eta} \quad [W/m^{2}], \text{ onde } \eta = \sqrt{\mu_{0}/\varepsilon_{0}} = 120\pi \quad [\Omega] \quad \acute{e'}_{h} a \text{ impedância do meio de propagação da onda EM (espaço livre), sendo } \mu_{0} = 4\pi \times 10^{-7} [H/m] e \varepsilon_{0} = 8.85 \times 10^{-12} [F/m].$ Ver páginas 21 a 36 de <u>http://www.fccdecastro.com.br/pdf/A_C2.pdf</u>,

https://www.tutorialspoint.com/antenna_theory/antenna_theory_poynting_vector.htm / e https://en.wikipedia.org/wiki/Poynting_vector . /

Comunicações Estratégicas

Prof Fernando DeCastro 34

Igualando então a densidade de potência $S = P/(4\pi r^2)$ [W/m²] no ponto $p(r, \theta = 90^\circ, \phi = 0^\circ)$ ao módulo do vetor de Poynting $|\underline{S}| = \frac{|E_{\theta}|^2}{2\eta}$ [W/m²] em p, com $\eta = 120\pi$ [Ω], obtemos a magnitude da componente E_{θ} do campo elétrico gerado em p pela antena isotrópica alimentada pela potência P:

Visto que o ganho de uma antena é uma medida da capacidade da antena focalizar energia em uma determinada direção, e dado que a antena isotrópica irradia uniformemente em todas as direções (θ, ϕ) do espaço \mathbb{R}^3 , não focalizando energia em qualquer direção particular, então o ganho de potência multiplicativo da antena isotrópica é 1.0 (= 0 [dB]), significando que a focalização do diagrama de irradiação é nula.

Importante notar que não existe distribuição espacial da potência irradiada mais uniforme no espaço \mathbb{R}^3 do que aquela que resulta de uma potência uniformemente irradiada a partir do centro e ao longo de uma superfície esférica, superfície cuja forma é a mesma do diagrama de irradiação de uma antena isotrópica. Em consequência, a antena isotrópica é a antena com menor ganho possível (0 [dB]) na direção de todos os seus *boresights* (porque não há uma direção específica para o *boresight*, mas sim todas as direções angulares possíveis do espaço \mathbb{R}^3). E justamente por isto a antena isotrópica é considerada um padrão de referência: Todas as demais antenas focalizam energia em uma determinada direção (θ, ϕ) específica de seu diagrama de irradiação (direção do *boresight*) e, portanto, torna-se prático referenciar o ganho (=capacidade de focalização) da antena em relação ao ganho da antena isotrópica (0 [dB]), cuja focalização é nula. Por esta razão o ganho de uma antena é dado em [dBi], onde o "i" significa que o ganho é referenciado ao ganho da antena isotrópica (0 [dBi]). Note que um irradiador isotrópico não é fisicamente realizável, sendo apenas um conceito matemático teórico utilizado na análise de antenas (<u>https://en.wikipedia.org/wiki/Isotropic_radiator</u>).

O referenciamento do ganho de uma determinada antena "A" em relação à antena isotrópica permite usar a equação (39) para determinar o campo elétrico E_{θ} gerado por "A" em um ponto $p(r, \theta, \phi)$ do espaço \mathbb{R}^3 , desde que se conheça o ganho da antena "A" em relação à antena isotrópica na direção (θ, ϕ) do ponto p onde se quer determinar o campo elétrico E_{θ} , conforme veremos no exemplo do próximo slide.

Exemplo 3: Uma antena com ganho G = 25[dBi] na direção do *boresight* é alimentada pelo TX com uma potência P = 1[W] conforme mostrado em (A) abaixo. A distância da antena até o ponto p é r = 2 [km]. **Pede-se: (a)** Determine a magnitude da componente E_{θ} do campo elétrico gerado no ponto $p(r, \theta = 90^{\circ}, \phi = 0^{\circ})$ pela antena. **(b)** Determine o módulo *S* do vetor de Poynting gerado no ponto $p(r, \theta = 90^{\circ}, \phi = 0^{\circ})$ pela antena.

Solução:

(a) Se a antena fosse uma antena isotrópica, um "observador" no ponto $p(r, \theta = 90^{\circ}, \phi = 0^{\circ})$ "olhando" na direção da antena teria a "percepção" de que a potência efetivamente irradiada é P = 1[W]. No entanto, a antena não é isotrópica, apresentando um ganho G = 25[dBi] na direção do *boresight*. Portanto, a potência efetivamente irradiada (*Effective Radiated Power*) é ERP = $P \cdot 10^{\frac{G}{10}} = 316.23$ [W], e daí, de (39), $|E_{\theta}| = \frac{\sqrt{60 \text{ERP[W]}}}{r[\text{m}]} = 68.872$ [mV/m]. (b) Da discussão nos slides 34 e 35 temos $S = \frac{|E_{\theta}|^2}{2n} = 6.291$ [μ W/m²].
Exemplo 4: Um dipolo cilíndrico de comprimento L = 1.5 [m] e raio do cilindro a = 2 [mm] opera na frequência f = 150 [MHz] e é alimentado pelo TX com uma potência P = 10 [W] conforme mostrado em (A) abaixo. A distância do dipolo até os pontos $p1(r, \theta = 90^\circ, \phi = 0^\circ)$ e $p2(r, \theta = 120^\circ, \phi = 0^\circ)$ mostrados em (A) é r = 2.5 [km]. **Pede-se: (a)** Determine a magnitude da componente $E_{\theta 1}$ do campo elétrico gerado no ponto p1 pelo dipolo. **(b)** Determine o módulo S1 do vetor de Poynting gerado no ponto p1 pelo dipolo. **(c)** Determine o ganho do dipolo em [dBi] na direção do *boresight* ($\theta = 90^\circ, \phi = 0^\circ$). **(d)** Determine a magnitude da componente $E_{\theta 2}$ do campo elétrico gerado no ponto p2 pelo dipolo. **(e)** Determine o módulo S2 do vetor de Poynting gerado no ponto p2 pelo dipolo. **(f)** Determine o ganho do dipolo em [dBi] na direção ($\theta = 120^\circ, \phi = 0^\circ$). **(g)** Plote em um gráfico polar o contorno do campo E_{θ} no plano E a uma distância r = 2.5 [km] do di-

polo. (h) Plote em um gráfico cartesiano a distribuição espacial de corrente I(z) no dipolo.

Comunicações Estratégicas

Ζ

Cap II.1 – Fundamentos de Array Processing

Solução:

É dado no enunciado:

 $f := 150 \text{ MHz} \rightarrow \lambda := \frac{c}{f} \rightarrow \lambda = 1.999 \text{m} \qquad P := 10 \text{ W} \qquad \eta := 120 \pi \Omega = 376.991 \Omega \qquad (impedância de propagação da onda EM no espaço livre)$ $L = 1.5 \text{m} \qquad a := 2 \text{ mm} \qquad r := 2.5 \text{ km} \qquad \theta 1 := 90^{\circ} \qquad \theta 2 := 120^{\circ}$

Impedância de entrada Ze medida nos terminais do dipolo:

Ze := Zin_Schelkunoff $\left(\frac{a}{mm}, \frac{\lambda}{m}, \frac{L}{m}\right)$ Ze = (533.177+ 635.906) $\cdot \Omega$

Do enunciado, o transmissor entrega uma potência $P = \left(\frac{Ie}{\sqrt{2}}\right)^2 \cdot Re(Ze)$ aos terminais do dipolo, onde $P = 10 \cdot W$. Resolvendo esta equação para Ie, obtemos o valor de pico no tempo da corrente Ie nos terminais do dipolo:

Ie := $\sqrt{\frac{2 \cdot P}{\text{Re}(\text{Ze})}} = 0.194\text{A}$

Daí, a tensão resultante nos terminais do dipolo é:

 $v := Ze \cdot Ie = (103.264 + 123.161) \cdot V$ |v| = 160.724V $arg(v) = 50.022^{\circ}$

Referindo a corrente de entrada Ie à posição de máxima corrente Io no dipolo (corrente de radiação), temos (vide Equação (33) - slide 16):

Io := if
$$\left(L > \frac{\lambda}{2}, \frac{Ie}{\sin\left(\frac{\pi \cdot L}{\lambda}\right)}, Ie\right)$$
 $|Io| = 0.274A$ arg(Io) = 0.deg

Dividindo a equação (18) do slide 14 por $e^{j \cdot \omega \cdot t}$ para expressá-la na forma fasorial (ver https://en.wikipedia.org/wiki/Phasor), obtemos o fasor da componente E0 do campo elétrico do dipolo:

$$E\theta Dipolo(r,\lambda,L,Io,\theta) := Io \cdot \frac{60 \cdot \Omega}{r \cdot \sin(\theta)} \cdot e^{j \cdot \left(-\frac{2 \cdot \pi}{\lambda} \cdot r + \frac{\pi}{2}\right)} \cdot \left(\cos\left(\frac{\pi \cdot L}{\lambda} \cdot \cos(\theta)\right) - \cos\left(\frac{\pi \cdot L}{\lambda}\right)\right)$$
(18)

(a) De (18) temos:

$$E\theta 1 := E\theta Dipolo(r, \lambda, L, Io, \theta 1) = (-8.42 + 7.457i) \cdot \frac{mV}{m} \qquad |E\theta 1| = 11.247 \cdot \frac{mV}{m} \qquad \arg(E\theta 1) = 138.471 \cdot \circ$$

(b) Da discussão nos slides 34 e 35 temos:

S1 :=
$$\frac{(|E\theta 1|)^2}{2\cdot \eta} = 0.168 \cdot \frac{\mu W}{m^2}$$

(c) Se substituirmos o dipolo por uma antena isotrópica e alimentarmos a isotrópica com a mesma potência $P = 10 \cdot W$ que alimentamos o dipolo, obteremos o seguinte valor para a magnitude da componente E01 do campo elétrico gerado pela isotrópica no ponto P1 (ver equação (39) no slide 35):

$$E\theta_Iso := \frac{\sqrt{60 \cdot \Omega \cdot P}}{r} = 9.798 \cdot \frac{mV}{m}$$

E, portanto, o ganho de potência do dipolo em relação à antena isotrópica na direção do *boresight* $\theta_1 = 90^{\circ}$ é dado por:

$$\mathbf{G} := \left(\frac{|\mathbf{E}\theta|}{|\mathbf{E}\theta||}\right)^2 = 1.318 \quad \text{vezes} \quad \rightarrow \quad \mathbf{G}d\mathbf{B}\mathbf{i} := 10 \cdot \log(\mathbf{G}) = 1.198 \quad \mathbf{d}\mathbf{B}\mathbf{i}$$

(d) De (18) temos:

$$E\theta 2 := E\theta Dipolo(r, \lambda, L, Io, \theta 2) = (-6.205 + 5.495i) \cdot \frac{mV}{m} \qquad |E\theta 2| = 8.288 \cdot \frac{mV}{m} \qquad arg(E\theta 2) = 138.471 \cdot \circ$$

(e) Da discussão nos slides 34 e 35 temos:

$$S2 := \frac{\left(\left|E\theta 2\right|\right)^2}{2 \cdot \eta} = 0.091 \cdot \frac{\mu W}{m^2}$$

(f) Se substituirmos o dipolo por uma antena isotrópica e alimentarmos a isotrópica com a mesma potência $P = 10 \cdot W$ que alimentamos o dipolo, obteremos o seguinte valor para a magnitude da componente $E\theta_2$ do campo elétrico gerado pela isotrópica no ponto P^2 (ver equação (39) no slide 35):

$$\underbrace{\text{E}\Theta \text{ Iso}}_{r} := \frac{\sqrt{60 \cdot \Omega \cdot P}}{r} = 9.798 \cdot \frac{mV}{m}$$

E, portanto, o ganho de potência do dipolo em relação à antena isotrópica na direção $\theta 2 = 120^{\circ}$ é dado por:

$$\mathbf{G} := \left(\frac{|\mathbf{E}\boldsymbol{\theta}2|}{\mathbf{E}\boldsymbol{\theta}_{-}\mathbf{Iso}}\right)^{2} = 0.716 \text{ vezes } \rightarrow \mathbf{GdBi} := 10 \cdot \log(\mathbf{G}) = -1.454 \text{ dBi}$$

(g) Da equação (18), o contorno no plano *E* do campo elétrico $|E_{\theta}|$ em [V/m] a uma distância r = 2.5 km é:

(h) Da equação (7) do slide 14 temos:

$$I(z) := if\left[z < 0, Io \cdot sin\left[\frac{2 \cdot \pi}{\lambda} \cdot \left(\frac{L}{2} + z\right)\right], Io \cdot sin\left[\frac{2 \cdot \pi}{\lambda} \cdot \left(\frac{L}{2} - z\right)\right]\right]$$

$$z := \frac{-L}{2}, -0.999 \cdot \frac{L}{2} \dots \frac{L}{2} \qquad \qquad \frac{L}{2} = 0.75 \text{ m}$$

Área de Recepção

Consideremos o enlace entre uma antena TX e uma antena RX separadas de uma distância r, conforme mostrado em (A) abaixo. A antena TX é alimentada por uma potência P e, em consequência da onda EM irradiada pela antena TX, surge um campo elétrico E_{θ} e um vetor de Poynting S no ponto $p(r, \theta = 90^{\circ}, \phi = 0^{\circ})$ onde se localiza a antena RX, conforme vimos no Exemplo 4 no slide 37. O campo elétrico E_{θ} em p estabelece correntes elétricas na estrutura geométrica de condutores que constitui a antena RX, de modo que surge uma tensão nos terminais da antena RX. Esta tensão é definida e quantificada quando se "olha" para dentro dos terminais da antena RX. O que se "vê" nos terminais da antena RX é o circuito equivalente de Thévenin mostrado em (B) abaixo (ver https://en.wikibooks.org/wiki/Electronics/Thevenin/Norton_Equivalents).

A impedância $Z_i = R_i + jX_i$ no circuito equivalente de Thévenin mostrado em (B) é a impedância de entrada da antena RX. Se a antena RX é um dipolo, Z_i é determinada pela função Zin_Schelkunoff (ver slide 18). A tensão $V_{oc} = \sqrt{4 A_{RX} R_r S} / \left| \sin \left(\frac{\pi L}{\lambda} \right) \right|$ em (B) depende da intensidade *S* do vetor de Poynting gerado no ponto *p* em consequência da onda EM irradiada pela antena TX, depende da resistência de radiação R_r da antena RX dada pela equação (35) do slide 17 a partir de R_i e depende da área de recepção A_{RX} da antena RX (ver pags 38 a 44 de <u>http://www.fccdecastro.com.br/pdf/A_C3.pdf</u>). O fator $\left| \sin \left(\frac{\pi L}{\lambda} \right) \right|$ no denominador converte a tensão de radiação para tensão nos terminais (ver discussão nos slides 16 e 17 quanto à conservação da potência).

A área de recepção $A_{\rm RX}$ da antena RX expressa a área virtual através da qual a antena RX extrai potência das frentes de onda da onda EM que nela incidem, entregando esta potência para a impedância de entrada $Z_{\rm in}$ RX do amplificador no *front-end* de RF do RX, que é a impedância de carga da antena. $A_{\rm RX}$ mantém uma relação de proporcionalidade com o ganho $G_{\rm RX}$ da antena RX dada por:

$$A_{\rm RX} = G_{\rm RX} \frac{\lambda^2}{4\pi} \tag{41}$$

(ver https://en.wikipedia.org/wiki/Antenna_aperture)

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

Enlace entre dois dipolos TX e RX

Exemplo 5: Um enlace é estabelecido entre dois dipolos TX e RX operando na frequência f = 5.2[MHz]. Ambos os dipolos são constituídos por um fio cilíndrico de comprimento L = 143 [m] e raio do cilindro a = 10 [mm]. Os dipolos TX e RX são paralelos ao plano da página e com orientação angular respectivamente dadas pelos ângulos $\alpha = 35^{\circ}$ e $\beta = 48^{\circ}$, conforme mostrado em (A) abaixo. As condições de propagação da onda EM se aproximam da propagação no espaço livre. O dipolo TX é alimentado com uma potência P = 5 [KW]. A impedância de entrada do amplificador no *front-end* de RF do RX é $Z_{in}RX = 50+j13$ [Ω]. **Pede-se: (a)** Determine a magnitude da componente E_{θ} do campo elétrico e o módulo *S* do vetor de Poynting, ambos gerados nas vizinhanças próximas do dipolo RX pela onda EM irradiada pelo TX. **(b)** Determine a área de recepção A_{RX} através da qual o dipolo RX extrai potência das frentes de onda da onda EM que nele incide proveniente do dipolo TX. **(c)** Determine a tensão de pico V_x nos terminais do dipolo RX, conforme equivalente de Thévenin mostrado em (B), onde V_{oc} é a tensão a circuito aberto nos terminais do dipolo RX na situação operacional dada e Z_e é a impedância de entrada do dipolo **(d)** Plote em um gráfico polar o contorno do campo E_{θ} no plano *E* a uma distância r = 100 [km] do dipolo TX. **(e)** Plote em um gráfico cartesiano a distribuição espacial de corrente I(z) no dipolo TX.

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

Enlace entre dois dipolos TX e RX

Solução:

É dado no enunciado:

 $f := 5.2 \cdot MHz \rightarrow \lambda := \frac{c}{f} \rightarrow \lambda = 57.652m \quad P := 5 \cdot kW \qquad \eta := 120 \cdot \pi \Omega = 376.991 \Omega \qquad (impedância de propagação da onda EM no espaço livre) \\ L = 143m \quad a := 10 \cdot mm \quad r := 100 \cdot km \quad \alpha := 35^{\circ} \quad \beta := 48^{\circ} \qquad ZinRX := (50 + j \cdot 13)\Omega$

(a) A impedância de entrada Ze medida nos terminais do dipolo TX (e do RX - os dipolos são iguais) é:

Ze := Zin_Schelkunoff $\left(\frac{a}{mm}, \frac{\lambda}{m}, \frac{L}{m}\right)$ Ze = (105.53 - 13.13) $\cdot \Omega$

Do enunciado, o transmissor entrega uma potência $P = \left(\frac{Ie}{\sqrt{2}}\right)^2 \cdot Re(Ze)$ aos terminais do dipolo TX, onde $P = 5 \cdot kW$. Resolvendo esta equação para Ie, obtemos o valor de pico no tempo da corrente Ie nos terminais do dipolo:

Ie :=
$$\sqrt{\frac{2 \cdot P}{\text{Re}(\text{Ze})}} = 9.734\text{A}$$

Daí, a tensão resultante nos terminais do dipolo TX é:

 $\mathbf{v} := \mathbf{Ze} \cdot \mathbf{Ie} = (1.027 \times 10^3 - 127.815) \cdot \mathbf{V} \quad |\mathbf{v}| = 1.035 \times 10^3 \cdot \mathbf{V} \quad \arg(\mathbf{v}) = -7.092^{\circ}$

Referindo a corrente de entrada Ie à posição de máxima corrente Io no dipolo TX (corrente de radiação), temos (vide Equação (33) - slide 16):

Io := if
$$\left(L > \frac{\lambda}{2}, \frac{Ie}{\sin\left(\frac{\pi \cdot L}{\lambda}\right)}, Ie\right)$$
 $|Io| = 9.753A$ arg(Io) = 0.deg

Dividindo a equação (18) do slide 14 por $e^{j \cdot \omega \cdot t}$ para expressá-la na forma fasorial (ver https://en.wikipedia.org/wiki/Phasor), obtemos o fasor da componente E0 do campo elétrico gerado pelo dipolo:

$$E\theta Dipolo(r, \lambda, L, Io, \theta) := Io \cdot \frac{60 \cdot \Omega}{r \cdot \sin(\theta)} \cdot e^{j \cdot \left(-\frac{2 \cdot \pi}{\lambda} \cdot r + \frac{\pi}{2}\right)} \cdot \left(\cos\left(\frac{\pi \cdot L}{\lambda} \cdot \cos(\theta)\right) - \cos\left(\frac{\pi \cdot L}{\lambda}\right)\right)$$
(18)

De (18), notando que θ = 90° – α é a direção de propagação da onda EM que aponta para o dipolo RX, temos:

$$E\theta := E\theta Dipolo(r, \lambda, L, Io, 90^{\circ} - \alpha) = (0.448 + 2.111i) \cdot \frac{mV}{m} \qquad |E\theta| = 2.158 \cdot \frac{mV}{m} \qquad \arg(E\theta) = 78.014 \cdot \circ$$

Da discussão nos slides 34 e 35 temos:

$$\mathbf{x} \coloneqq \frac{\left(\left|\mathbf{E}\boldsymbol{\theta}\right|\right)^2}{2 \cdot \eta} = 6.175 \times 10^{-3} \cdot \frac{\mu W}{m^2}$$

(b) Se alimentarmos o dipolo RX com a potência $P = 5 \cdot kW$, o mesmo irradiará uma onda EM na direção $\theta rx := 90^{\circ} - \beta = 42 \cdot \circ$ que aponta para o dipolo TX. E daí, da equação (18) obtemos o valor para a magnitude da componente E0 do campo elétrico por ele gerado nas vizinhanças do dipolo TX:

Se substituirmos o dipolo RX por uma antena isotrópica e alimentarmos a isotrópica com a potência $P = 5 \cdot kW$, obteremos o seguinte valor para a magnitude da componente $E\theta$ do campo elétrico gerado pela isotrópica nas vizinhanças do dipolo TX (ver equação (39) no slide 35):

$$E\theta_Iso := \frac{\sqrt{60 \cdot \Omega \cdot P}}{r} = 5.477 \cdot \frac{mV}{m}$$

E, portanto, o ganho de potência do dipolo RX em relação à antena isotrópica na direção $\theta rx = 42.^{\circ}$ é dado por:

$$\operatorname{Grx} := \left(\frac{|\operatorname{E}\theta_{rx}|}{\operatorname{E}\theta_{-}\operatorname{Iso}}\right)^2 = 1.713 \quad \text{vezes} \rightarrow \operatorname{GrxdBi} := 10 \cdot \log(\operatorname{Grx}) = 2.34 \text{ dBi}$$

E daí, a área de recepção Arx através da qual o dipolo RX extraí potência das frentes de onda da onda EM que nele incide proveniente do dipolo TX é dada pela equação (41) do slide 44:

Arx :=
$$\operatorname{Grx} \cdot \frac{\lambda^2}{4 \cdot \pi} = 453.038 \,\mathrm{m}^2$$

Comunicações Estratégicas

Cap II.1 – Fundamentos de Array Processing

(c) Da equação (35) do slide 17:

$$\operatorname{Rr} := \operatorname{if}\left(L > \frac{\lambda}{2}, \operatorname{Re}(\operatorname{Ze}) \cdot \sin\left(\frac{\pi \cdot L}{\lambda}\right)^2, \operatorname{Re}(\operatorname{Ze})\right) = 105.13\Omega$$

Da equação (40) do slide 44:

Do divisor de tensão no equivalente de Thévenin acima obtemos o valor de pico da tensão Vx:

$$Vx:=\frac{\sqrt{2} \cdot Voc \cdot ZinRX}{Ze + ZinRX} = (0.016 + 4.075i \times 10^{-3}) \cdot V \qquad |Vx| = 16.143 \, mV(pk)$$

Enlace entre dois dipolos TX e RX

(d) Da equação (18), o contorno no plano *E* do campo elétrico $|E_{\theta}|$ em [mV/m] a uma distância r = 100 km é:

Enlace entre dois dipolos TX e RX

(e) Da equação (7) do slide 14 temos:

$$I(z) := if\left[z < 0, Io \cdot sin\left[\frac{2 \cdot \pi}{\lambda} \cdot \left(\frac{L}{2} + z\right)\right], Io \cdot sin\left[\frac{2 \cdot \pi}{\lambda} \cdot \left(\frac{L}{2} - z\right)\right]\right]$$

$$z := \frac{-L}{2}, -0.999 \cdot \frac{L}{2} \dots \frac{L}{2}$$
 $\frac{L}{2} = 71.5 \text{ m}$

Phased Arrays

Um phased array é formado por um conjunto de antenas localizadas em coordenadas específicas, em geral próximas uma da outra, cada antena constituindo um elemento do array. Cada antena do array irradia uma onda EM cuja amplitude e fase são determinadas pela amplitude e fase da corrente que excita a antena. Isto pode ser notado, por exemplo, na equação (18) para o dipolo no slide 14, quando a re-escrevemos na forma fasorial (dividindo a equação por $e^{j\omega t}$): A fase e a magnitude do fasor E_{θ} resulta uma função direta da fase e magnitude do fasor da corrente de radiação I_0 , que por sua vez, através da equação (33) no slide 16, é uma função direta do fasor da corrente I_i que excita o dipolo nos seus terminais de entrada. Embora estejamos aqui discutindo o comportamento EM de um array no contexto de transmissão, pelo da reciprocidade (ver https://en.wikipedia.org/wiki/Radiation pattern#Reciprocity teorema е https://en.wikipedia.org/wiki/Antenna (radio)#Reciprocity), o comportamento é o mesmo tanto na transmissão quanto na recepção, conforme veremos adiante.

Portanto, a magnitude e a fase da onda EM irradiada por cada dipolo de um array é determinada pela magnitude e fase da corrente I_i que excita o dipolo. O conjunto de ondas EM irradiadas pelos dipolos do array se interferem construtivamente na direção (θ, ϕ) do espaço \mathbb{R}^3 correspondente ao boresight do diagrama de irradiação. Isto é válido não apenas para o dipolo, mas sim para qualquer irradiador. Por exemplo, em (A) é mostrado um phased array planar 4×4 cujos 16 elementos são antenas patch (https://en.wikipedia.org/wiki/Patch antenna). Note que cada patch é alimentado por uma linha de transmissão (LT) implementada em microstrip (https://en.wikipedia.org/wiki/Microstrip). As LTs são interconectadas formando uma rede de alimentação para o conjunto de antenas patch (https://en.wikipedia.org/wiki/Microstrip antenna). O comprimento de cada LT é projetado para que a amplitude e fase da corrente que alimenta o respectivo patch gere uma onda EM que interfira construtivamente com as ondas EM geradas pelos demais patchs do array, maximizando o ganho do diagrama de irradiação do array na direção do lobo principal (boresight), conforme mostrado em (A), simultaneamente minimizando o ganho nos lobos secundários através de interferência destrutiva entre as ondas.

Phased Arrays

Em phased arrays que aproximam o estado da arte, como, por exemplo, aqueles utilizados em radares AESA (ver <u>https://en.wikipedia.org/wiki/Active_electronically_scanned_array</u>), a fase e a magnitude da corrente que excita cada elemento do array é digitalmente controlada por um respectivo modulador M que ajusta a amplitude e fase da tensão na sua saída através dos parâmetros de controle α e θ em sua entrada, conforme mostrado em (A) abaixo para um *phased array* de 8 elementos (antenas).

A arquitetura de cada modulador M mostrado em (A) abaixo é exemplificada pelo modulador digital 16-QAM mostrado em (A) no próximo slide, cuja operação geral é descrita em <u>http://www.fccdecastro.com.br/pdf/T2_Aula2_13032020.pdf</u> e <u>http://www.fccdecastro.com.br/A2T2UFSM.html</u>. Em particular, note em (A) do próximo slide que $\alpha \in \theta$ respectivamente controlam a amplitude e a fase da tensão U(t) na saída do modulador, que, por sua vez, controla a amplitude e fase da corrente na antena.

A informação a ser irradiada pelo lobo principal do *array* na direção β de seu *boresight* é a sequência de bits "*bitstream*" em (A) abaixo e em (A) do próximo slide. O bloco "controlador" em (A) abaixo tem gravado na *look up table* LUT os parâmetros de controle α e θ de cada modulador para que a amplitude e fase da corrente que alimenta a respectiva antena gere uma onda EM que interfira construtivamente com as ondas EM geradas pelas demais antenas do *array*, maximizando o ganho do diagrama de irradiação do *array* na direção β do lobo principal (*boresight*) e simultaneamente minimizando o ganho nos lobos secundários através de interferência destrutiva entre as ondas.

Este conjunto de parâmetros de controle $\alpha \in \theta$ que determina as correntes em cada antena, formando o lobo principal e maximizando o ganho do diagrama de irradiação do *array* na direção β , é determinado por algoritmos para *beamforming*, que estudaremos no Cap II.3.

A direção β do lobo principal é um parâmetro de entrada do bloco "controlador", que ajusta progressivamente os ângulos θ na LUT de forma a apontar o *boresight* na direção β desejada, conforme veremos adiante Cap II.2. Note, portanto, a versatilidade de um *phased array* AESA quanto à rapidez no posicionamento do seu *boresight*, em comparação com a inércia de um posicionador mecânico, característica extremamente desejável para radares de aeronaves militares. Sem falar que o algoritmo para *beamforming* permite formar múltiplos lobos principais, cada um apontando para uma direção distinta dos demais. Esta característica é muito desejável em sistemas multiusuários, em que cada usuário é focalizado por um dos lobos do *phased-array* (https://en.wikipedia.org/wiki/Space-division_multiple_access).

Identificação dos bits das palavras binárias: [b₃b₂b₁b₀]

Comunicações Estratégicas

Cap II.2 – Phased Arrays

Consideremos inicialmente o *array* mais simples possível, o *array* de apenas dois irradiadores, conforme mostrado na figura abaixo:

Array de dois irradiadores do tipo dipolo linear (em vermelho), cada um deles percorrido respectivamente pelas correntes $I_0 = |I_0|e^{j \angle I_0}$ e $I_1 = |I_1|e^{j \angle I_1}$. $|I_0|$ e $|I_1|$ são os valores máximos das correntes nos respectivos irradiadores.

Comunicações Estratégicas

Cap II.2 – Phased Arrays

O centro do irradiador I_0 encontra-se localizado nas coordenadas (0,0,0). O irradiador I_1 , com centro localizado em q(x', y', z'), encontra-se afastado de uma distância d do plano Ψ , que é sempre perpendicular ao raio r, e que, nesta particular posição na figura, passa na origem (0,0,0).

O vetor unitário \underline{V} é alinhado à direção do raio r que liga a origem (0,0,0) ao ponto $p(r,\theta,\phi)$ no *farfield* onde é desejado determinar E_{θ} .

Quando o plano Ψ intercepta a origem (0,0,0), ele é denominado de <u>plano de fase zero</u>. Quando elevamos o plano Ψ de modo a interceptar o centro do dipolo em q(x', y', z') resulta que o plano Ψ' dista d do plano de fase zero.

Projetando q(x', y', z') perpendicularmente sobre o plano Ψ de fase zero obtemos o ponto $u(x, y, z) \in \Psi$, o qual encontra-se afastado de uma distância *s* da origem (0,0,0) conforme mostra a figura.

O campo elétrico E_{θ} em um ponto $p(r, \theta, \phi)$ da região de *farfield* é uma composição dos campos elétricos dos irradiadores I_0 e I_1 .

O irradiador I_0 gera um campo elétrico $E_{\theta,0}$ em $p(r,\theta,\phi)$ dado por :

Considerando que r >> s, o que faz o raio r tender a ser paralelo ao segmento uq na figura, e considerando que r >> d, então o irradiador I_1 gera um campo elétrico $E_{\theta,1}$ em $p(r, \theta, \phi)$ dado por:

Comunicações Estratégicas

Cap II.2 – Phased Arrays

A substituição do fator de amplitude 1/(r-d) por 1/r efetuada em (3) decorre da condição r >> d. No entanto, a distância d não pode ser desprezada no fator de fase $e^{j\beta(r-d)}$ visto que o campo resultante é uma soma fasorial dos campos individuais.

Somando (2) e (3), obtemos $E_{\theta} = E_{\theta,0} + E_{\theta,1}$:

Seja agora o vetor $\underline{U} = \begin{bmatrix} x & y & z \end{bmatrix}^T$ cuja ponta é um ponto do plano Ψ . A figura mostra o caso em que o plano Ψ passa na origem (0,0,0), sendo, portanto, o plano de fase zero.

Da figura temos:

Fazendo agora o plano ψ interceptar o centro do dipolo em q(x', y', z') resulta que o plano ψ' dista *d* do plano de fase zero. Portanto, a projeção de $\underline{U} \in \psi'$ sobre $V \perp \psi'$ resulta na distância d:

$$d = \underline{U}^{\mathrm{T}} \cdot \underline{V}$$
⁽⁶⁾

Daí

Se a ponta do vetor $\underline{U} = \begin{bmatrix} x & y & z \end{bmatrix}^T$ for o centro do dipolo em q(x', y', z'), temos

$$d = x' \operatorname{sen} \theta \cos \phi + y' \operatorname{sen} \theta \operatorname{sen} \phi + z' \cos \theta$$
(9)

Substituindo (9) em (4):

$$E_{\theta} = \left(I_{0} + I_{1}e^{j\beta d}\right) \frac{60}{r} e^{j\left(\omega t - \beta r + \frac{\pi}{2}\right)} \left\{ \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta} \right\} = \left(I_{0} + I_{1}e^{j\beta\left(x'\sin\theta\cos\phi + y'\sin\theta\sin\phi + z'\cos\theta\right)}\right) \frac{60}{r} e^{j\left(\omega t - \beta r + \frac{\pi}{2}\right)} \left\{ \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta} \right\} \left[\frac{V}{m}\right]$$
(10)

Façamos uma primeira generalização em (10) considerando que o irradiador I_0 pode não estar na origem (0,0,0), denominada **Centro de Fase** do *array*. Nesta situação, se o irradiador I_0 estiver localizado nas coordenadas (x_0, y_0, z_0) e se o irradiador I_1 estiver localizado nas coordenadas (x_1, y_1, z_1) então (10) torna-se:

$$E_{\theta} = \begin{pmatrix} I_0 e^{j\beta(x_0 \sin\theta\cos\phi + y_0\sin\theta\sin\phi + z_0\cos\phi)} + \\ I_1 e^{j\beta(x_1\sin\theta\cos\phi + y_1\sin\theta\sin\phi + z_1\cos\phi)} + \end{pmatrix} \frac{60}{r} e^{j\left(\omega t - \beta r + \frac{\pi}{2}\right)} \begin{cases} \cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right) \\ \sin\theta \end{cases} \begin{cases} \left[\frac{V}{m}\right] \end{cases} \end{cases}$$
(11)

Generalizando ainda mais, consideremos em (11) que o *array* pode não estar limitado a apenas 2 irradiadores, mas sim K irradiadores cada um deles percorrido por uma corrente $I_k = |I_k| e^{j \angle I_k}$ e situado nas coordenadas (x_k, y_k, z_k) , sendo $k = 0, 1, \dots K - 1$:

$$E_{\theta} = \begin{pmatrix} I_{0}e^{j\beta(x_{0}\sin\theta\cos\phi+y_{0}\sin\theta\sin\phi+z_{0}\cos\phi)} + \\ I_{1}e^{j\beta(x_{1}\sin\theta\cos\phi+y_{1}\sin\theta\sin\phi\phi+z_{1}\cos\phi)} + \\ \vdots \\ I_{K-1}e^{j\beta(x_{K-1}\sin\theta\cos\phi+y_{K-1}\sin\theta\sin\phi+z_{K-1}\cos\phi)} \end{pmatrix} \frac{60}{r}e^{j\left(\omega t - \beta r + \frac{\pi}{2}\right)} \left\{ \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta} \right\} \left[\frac{V}{m}\right]$$
(12)

ou

$$E_{\theta} = \sum_{k=0}^{K-1} \left(I_{k} e^{j\beta(x_{k} \sin\theta \cos\phi + y_{k} \sin\theta \sin\phi + z_{k} \cos\theta)} \right) \frac{60}{r} e^{j\left(\omega t - \beta r + \frac{\pi}{2}\right)} \left\{ \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta} \right\} \left[\frac{V}{m} \right]$$
(13)

Substituindo $\beta = 2\pi/\lambda$ em (13) e generalizando (13) de modo que cada k-ésimo dipolo tenha um comprimento L_k não necessariamente igual ao dos demais dipolos, resulta em:

Exemplo 6: Um enlace operando em $f_0 = 435$ [MHz] é estabelecido entre um *phased-array* formado por K = 4 dipolos TX e um dipolo RX conforme mostrado em (A) abaixo. A distância entre o centro de fase do *array* (= origem do sistema cartesiano *xyz* do *array*) e o centro do sistema cartesiano x'y'z' do dipolo RX é r = 10 [Km]. As coordenadas dos centros dos dipolos do *array* são respectivamente $(x_0, y_0, z_0) = (17.229, 0, 0)$ [cm], $(x_1, y_1, z_1) = (0, 17.229, 0)$ [cm], $(x_2, y_2, z_2) = (-17.229, 0, 0)$ [cm], $(x_3, y_3, z_3) = (0, -17.229, 0)$ [cm]. As correntes **de radiação** em cada dipolo do *array* são $I_0(t) = 0.2 \cos(2\pi f_0 t + 0^{\circ})$ [A], $I_1(t) = 0.2 \cos(2\pi f_0 t - 90^{\circ})$ [A], $I_2(t) = 0.2 \cos(2\pi f_0 t + 0^{\circ})$ [A] e $I_3(t) = 0.2 \cos(2\pi f_0 t + 90^{\circ})$ [A]. As condições de propagação da onda EM se aproximam da propagação no espaço livre. A impedância de entrada do amplificador no *front-end* de RF do RX é Z_{in} RX =600+*j*50 [Ω]. **Pede-se: (a)** Determine o fasor das tensões nos terminais dos dipolos do *array*. (b) Determine a potência útil em [W] que alimenta cada dipolo do *array*. (c) Determine a magnitude da componente E_{θ} do campo elétrico e o módulo *S* do vetor de Poynting, ambos gerados nas vizinhanças próximas do dipolo RX pela onda EM que nele incide proveniente do *array* TX. (e) Determine a tensão de pico V_x nos terminais do dipolo RX. (f) Plote em um gráfico polar o contorno do campo E_{θ} no plano H gerado pelo *array* a uma distância r = 10 [km] de centro de fase do *array*.

Solução:

Do enunciado:

$$f := 435 \cdot MHz \rightarrow \lambda := \frac{c}{f} = 0.689 \text{ m} \qquad r := 10 \cdot \text{km} \rightarrow \text{dist}ancia entre as origens dos sistemas cartesianos do array TX e do dipolo RX
La := 1.2· $\lambda \rightarrow K'' := \begin{pmatrix} La \\ La \\ La \\ La \end{pmatrix} = \begin{pmatrix} 82.701 \\ 82.701 \\ 82.701 \\ 82.701 \\ 82.701 \end{pmatrix}$ ·cm $\rightarrow \text{ comprimento dos dipolos do array } (impedância de propagação da onda EM no espaço livre)
Kore i length(L) = 4 \rightarrow número de dipolos no array ZinRX := (600 + j·50)\Omega \rightarrow Impedância de entrada do amplificador no front-end de RF do RX.
ra := 0.01· λ = 6.892·mm \rightarrow $K' := \begin{pmatrix} ra \\ ra \\ ra \\ ra \end{pmatrix} = \begin{pmatrix} 0.689 \\ 0.689 \\ 0.689 \\ 0.689 \end{pmatrix}$ ·cm \rightarrow raio do fio cilíndrico dos dipolos do array
C = $\begin{pmatrix} 17.229 & 0 & 0 \\ 0 & 17.229 & 0 \\ -17.229 & 0 & 0 \\ 0 & -17.229 & 0 \end{pmatrix}$ ·cm \rightarrow cada k-ésima linha da matriz C é a coordenada $\begin{pmatrix} x_k & y_k & z_k \end{pmatrix}$ do k-ésimo dipolo do array, $k=0,1 \dots K-1$, sendo $K = 4$.$$$

 $Io := \begin{pmatrix} 0.2 \cdot e^{j \cdot 0^{\circ}} \\ 0.2 \cdot e^{-j \cdot 90^{\circ}} \\ 0.2 \cdot e^{j \cdot 0^{\circ}} \\ 0.2 \cdot e^{j \cdot 0^{\circ}} \\ 0.2 \cdot e^{j \cdot 90^{\circ}} \end{pmatrix} \cdot A \quad \Rightarrow \text{ cada k-ésima componente do vetor lo corresponde ao fasor da corrente de radiação do k-ésimo dipolo do$ *array*, k=0,1 ... K-1, sendo K = 4 .

 $Lr := 0.75 \cdot \lambda = 51.688 \cdot cm \rightarrow comprimento do dipolo RX$

 $rb := 0.02 \cdot \lambda = 13.784 \cdot mm \rightarrow raio do fio cilíndrico do dipolo RX$

(a) Índices a e b para os K = 4 dipolos do array.

$$a := 0 \dots K - 1 \rightarrow a = \qquad b := 0 \dots K - 1 \rightarrow b =$$

$$\begin{array}{c} 0 \\ 1 \\ 2 \\ 3 \end{array}$$

Distâncias S_{ab} entre os centros dos dipolos a e b do array:

$$S_{\mathbf{a}, \mathbf{b}} := \sqrt{\left[\left(\mathbf{C}^{(0)}\right)_{\mathbf{a}} - \left(\mathbf{C}^{(0)}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{(1)}\right)_{\mathbf{a}} - \left(\mathbf{C}^{(1)}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{(2)}\right)_{\mathbf{a}} - \left(\mathbf{C}^{(2)}\right)_{\mathbf{b}}\right]^{2}} - \frac{1}{2}$$

 $\Rightarrow S = \begin{pmatrix} 0 & 0.244 & 0.345 & 0.244 \\ 0.244 & 0 & 0.244 & 0.345 \\ 0.345 & 0.244 & 0 & 0.244 \\ 0.244 & 0.345 & 0.244 & 0 \end{pmatrix} m$

Se os índices a e b são iguais (a=b) determina a impedância própria Z_{a,a}, e se forem diferentes determina a impedância mútua Z_{a,b}:

$$Z_{a,b} := if\left(a = b, Zin_Schelkunoff\left(\frac{R_a}{mm}, \frac{\lambda}{m}, \frac{L_a}{m}\right), ZMutual_Schelkunoff\left(\frac{L_a}{m}, \frac{L_b}{m}, \frac{R_a}{mm}, \frac{R_b}{mm}, \frac{S_{a,b}}{m}, \frac{\lambda}{m}\right)\right)$$

Portanto, a matriz impedância Z entre os dipolos (como há K = 4 dipolos no *array* então a matriz Z é de tamanho rows(Z) = 4 x cols(Z) = 4) resulta em:

$$Z = \begin{pmatrix} 169.2436 - 301.9953i & 70.2135 - 71.985i & -5.5423 - 77.9011i & 70.2135 - 71.985i \\ 70.2135 - 71.985i & 169.2436 - 301.9953i & 70.2135 - 71.985i & -5.5423 - 77.9011i \\ -5.5423 - 77.9011i & 70.2135 - 71.985i & 169.2436 - 301.9953i & 70.2135 - 71.985i \\ 70.2135 - 71.985i & -5.5423 - 77.9011i & 70.2135 - 71.985i & 169.2436 - 301.9953i \end{pmatrix}$$

A relação matricial entre as tensões Vi_k e as correntes Ii_k nos terminais dos K = 4 dipolos, com k=0,1 ... K-1, é dada por:

$$\begin{pmatrix} Vi_{0} \\ Vi_{1} \\ Vi_{2} \\ Vi_{3} \end{pmatrix} = \begin{pmatrix} Z_{00} & Z_{01} & Z_{02} & Z_{03} \\ Z_{10} & Z_{11} & Z_{12} & Z_{13} \\ Z_{20} & Z_{21} & Z_{22} & Z_{23} \\ Z_{30} & Z_{31} & Z_{32} & Z_{33} \end{pmatrix} \begin{pmatrix} Ii_{0} \\ Ii_{1} \\ Ii_{2} \\ Ii_{3} \end{pmatrix}$$
Convertendo as correntes de radiação Io_k dos dipolos do *array* para as correntes nos terminais Ii_k dos respectivos dipolos através da equação (33) do slide 16, obtemos:

$$Ii := \begin{pmatrix} Io_0 \sin\left(\frac{\pi \cdot L_0}{\lambda}\right) \\ Io_1 \sin\left(\frac{\pi \cdot L_1}{\lambda}\right) \\ Io_2 \sin\left(\frac{\pi \cdot L_2}{\lambda}\right) \\ Io_3 \sin\left(\frac{\pi \cdot L_3}{\lambda}\right) \end{pmatrix} \longrightarrow Iii = \begin{pmatrix} 0.118 \\ 0.118 \\ 0.118 \\ 0.118 \end{pmatrix} A \quad arg(Ii) = \begin{pmatrix} 180 \\ 90 \\ 180 \\ -90 \end{pmatrix} \cdot \circ$$

E daí, as tensões Vi_k nos terminais dos K = 4 dipolos são dadas por:

$$Vi := Z \cdot Ii \longrightarrow |Vi| = \begin{pmatrix} 48.629 \\ 38.741 \\ 48.629 \\ 43.005 \end{pmatrix} \cdot V \qquad arg(Vi) = \begin{pmatrix} 113.312 \\ 75.293 \\ 113.312 \\ -175.168 \end{pmatrix} \cdot \circ$$

Este é, portanto, o conjunto de tensões que o controlador do *phased-array* necessita aplicar nos terminais dos dipolos do *array* para gerar o conjunto de respectivas correntes de radiação dado no enunciado (ver slides 53 e 54).

(b) Determinando a potência útil Pu de cada dipolo a partir da respectiva potência complexa através ds relação Pu=1/2 Re{VI^{*}} (ver https://en.wikipedia.org/wiki/AC_power):

$$Pu := \begin{pmatrix} \frac{1}{2} \cdot \operatorname{Re}(\operatorname{Vi}_{0} \cdot \overline{\operatorname{Ii}}_{0}) \\ \frac{1}{2} \cdot \operatorname{Re}(\operatorname{Vi}_{1} \cdot \overline{\operatorname{Ii}}_{1}) \\ \frac{1}{2} \cdot \operatorname{Re}(\operatorname{Vi}_{2} \cdot \overline{\operatorname{Ii}}_{2}) \\ \frac{1}{2} \cdot \operatorname{Re}(\operatorname{Vi}_{3} \cdot \overline{\operatorname{Ii}}_{3}) \end{pmatrix} = \begin{pmatrix} 1.131 \\ 2.203 \\ 1.131 \\ 0.213 \end{pmatrix} \cdot W$$

(C) Dividindo a equação (14) do slide (68) por $e^{j \cdot \omega \cdot t}$ convertemos a equação para sua forma fasorial e obtemos o fasor da componente E θ do campo elétrico gerado pelo *array* de K = 4 dipolos no ponto $p(r, \theta, \phi)$ do espaço \mathbb{R}^3 :

$$E\theta(_lo, r, \theta, \phi, _L, _C) := \sum_{k=0}^{K-1} \begin{bmatrix} j \cdot \frac{2\pi}{\lambda} \cdot \left[\left(_C^{(0)} \right)_{k} \cdot \sin(\theta) \cdot \cos(\phi) & \dots \\ + \left(_C^{(1)} \right)_{k} \cdot \sin(\theta) \cdot \sin(\phi) & \dots \\ + \left(_C^{(2)} \right)_{k} \cdot \cos(\theta) & \dots \end{bmatrix} \cdot \left[\left(\frac{\cos\left(\frac{\pi \cdot _L_{k}}{\lambda} \cdot \cos(\theta)\right) - \cos\left(\frac{\pi \cdot _L_{k}}{\lambda}\right)}{\sin(\theta)} \right) \right] \cdot \frac{60 \cdot \Omega}{r} \cdot e^{j \cdot \left(\frac{-2\pi}{\lambda} \cdot r + \frac{\pi}{2}\right)}$$
(14)

onde $\left[\left(\begin{array}{c} C^{(0)} \end{array}\right)_{k} \left(\begin{array}{c} C^{(1)} \end{array}\right)_{k} \left(\begin{array}{c} C^{(2)} \end{array}\right)_{k} \right]$ corresponde à coordenada $\left(\begin{array}{c} x_{k} \\ y_{k} \end{array}\right)_{k} \left(\begin{array}{c} z_{k} \\ z_{k} \end{array}\right)$ do centro do k-ésimo dipolo do array.

De (14), a componente E0 do campo elétrico gerado pelo array nas vizinhanças próximas do dipolo RX é:

 $E\theta array := E\theta(Io, r, 90^{\circ}, 90^{\circ}, L, C) \rightarrow |E\theta array| = 8.683 \frac{mV}{m} \quad arg(E\theta array) = 76.269^{\circ}$

Da discussão nos slides 34 e 35 obtemos o módulo S do vetor de Poynting gerado nas vizinhanças próximas do dipolo RX pela onda EM irradiada pelo array TX:

$$S := \frac{\left(\left|E\theta array\right|\right)^2}{2 \cdot \eta} = 0.1 \cdot \frac{\mu W}{m^2}$$

(d) A impedância de entrada ZeRX medida nos terminais do dipolo RX é:

ZeRX := Zin_Schelkunoff
$$\left(\frac{rb}{mm}, \frac{\lambda}{m}, \frac{Lr}{m}\right)$$
 = (418.716 - 92.376i) Ω

Se hipoteticamente alimentarmos o dipolo RX com uma potência Prx := 1kW, o mesmo irradiará uma onda EM na direção ($\theta=90^\circ$, $\phi=90^\circ$) que aponta para o *array* TX. A potência Prx gera uma corrente IeRX nos terminais do dipolo RX que estão relacionadas através da expressão

$$Prx = \left(\frac{IeRX}{\sqrt{2}}\right)^2 \cdot Re(ZeRX), Resolvendo esta expressão para a corrente de entrada IeRX obtemos:$$

IeRX :=
$$\sqrt{\frac{2 \cdot Prx}{Re(ZeRX)}} = 2.186 \text{ A}$$

Referindo a corrente de entrada IeRX à posição de máxima corrente IoRX no dipolo RX (corrente de radiação), temos (vide Equação (33) _ slide 16):

$$IORX := if\left(Lr > \frac{\lambda}{2}, \frac{IeRX}{sin\left(\frac{\pi \cdot Lr}{\lambda}\right)}, IeRX\right) \rightarrow |IORX| = 3.091 \text{ A} \quad arg(IORX) = 0 \cdot deg$$

E daí, da equação (18) do slide 14 em sua forma fasorial obtemos para θ =90° e r = 10 km o valor para a magnitude da componente E θ rx do campo elétrico gerado pelo dipolo RX nas vizinhanças do array TX:

$$E\theta Dipolo(_Io, r, \lambda, _L, \theta) := _Io \cdot \frac{60 \cdot \Omega}{r \cdot sin(\theta)} \cdot e^{j \cdot \left(-\frac{2 \cdot \pi}{\lambda} \cdot r + \frac{\pi}{2}\right)} \cdot \left(\cos\left(\frac{\pi \cdot _L}{\lambda} \cdot \cos(\theta)\right) - \cos\left(\frac{\pi \cdot _L}{\lambda}\right)\right)$$
(18)
$$E\theta rx := E\theta Dipolo(IoRX, r, \lambda, Lr, 90^{\circ}) \rightarrow |E\theta rx| = 31.658 \cdot \frac{mV}{m} \quad arg(E\theta rx) = 76.269 \cdot deg$$

Se substituirmos o dipolo RX por uma antena isotrópica e alimentarmos a isotrópica com a mesma potência $Prx = 1 \cdot kW$ que alimentamos o dipolo RX, obtemos o valor da magnitude da componente $E\theta$ do campo elétrico gerado pela isotrópica nas vizinhanças do array TX (ver equação (39) no slide 35):

$$E\theta_Iso := \frac{\sqrt{60 \cdot \Omega \cdot Prx}}{r} = 24.495 \cdot \frac{mV}{m}$$

E, portanto, o ganho de potência do dipolo RX em relação à antena isotrópica na direção (θ=90°, φ=90°) é dado por:

$$\operatorname{Grx} := \left(\frac{|\operatorname{E}\Theta_{\mathrm{rx}}|}{\operatorname{E}\Theta_{\mathrm{Iso}}}\right)^2 = 1.67 \quad \text{vezes} \rightarrow \operatorname{GrxdBi} := 10 \cdot \log(\operatorname{Grx}) = 2.23 \text{ dBi}$$

E daí, a área de recepção Arx através da qual o dipolo RX extraí potência das frentes de onda da onda EM que nele incide proveniente do *array* TX é dada pela equação (41) do slide 44:

Arx :=
$$\operatorname{Grx} \cdot \frac{\lambda^2}{4 \cdot \pi} = 631.344 \cdot \operatorname{cm}^2$$

(e) Da equação (35) do slide 17:

$$\operatorname{Rr} := \operatorname{if}\left(\operatorname{Lr} > \frac{\lambda}{2}, \operatorname{Re}(\operatorname{ZeRX}) \cdot \sin\left(\frac{\pi \cdot \operatorname{Lr}}{\lambda}\right)^2, \operatorname{Re}(\operatorname{ZeRX})\right) = 209.358\Omega$$

Da equação (40) do slide 44: $Voc := \frac{\sqrt{4 \cdot Arx \cdot Rr \cdot S}}{\left| sin\left(\frac{\pi \cdot L_0}{\lambda} \right) \right|} = 3.912 \text{ mV}$ (rms) $V_{oc} = \frac{V_x}{V_{oc}} = \frac{V_x}{V_x} = Z_{in}RX$

 $ZeRX = (418.716 - 92.376) \cdot \Omega$

 $ZinRX = (600 + 50i) \cdot \Omega$

Do divisor de tensão no equivalente de Thévenin acima obtemos o valor de pico da tensão Vx:

$$Vx:=\frac{\sqrt{2} \cdot Voc \cdot ZinRX}{ZeRX + ZinRX} = (3.242 + 0.406) \cdot mV \qquad |Vx| = 3.267 mV (pk)$$

78

(f) Da equação (14), o contorno no plano *E* do campo elétrico $|E_{\theta}|$ em [mV/m] a uma distância $r = 10 \cdot \text{km}$ é:

$$\mathbf{N} \coloneqq 1000 \quad \mathbf{n} \coloneqq \mathbf{0} \dots \mathbf{N} - 1 \quad \mathbf{\phi}_{\mathbf{n}} \coloneqq 2 \cdot \pi \cdot \frac{\mathbf{n}}{\mathbf{N}}$$

Exemplo 7: Um enlace operando em $f_0 = 435$ [MHz] é estabelecido entre dois *phased-arrays* idênticos, cada um deles formado por K = 4 dipolos conforme (B) abaixo, sendo um dipolo o elemento ativo excitador "E" e os demais são elementos passivos: refletor "R", diretor 1 "D1" e diretor 2 "D2", conforme mostrado em (A). *Phased-arrays* com elementos passivos (=elementos parasitas) são também conhecidos como antenas Yagi-Uda (ver <u>https://en.wikipedia.org/wiki/Yagi%E2%80%93Uda_antenna</u>). A distância entre o centro de fase dos *arrays* TX e RX é r = 10 [Km], tendo ambos orientação angular respectivamente dadas pelos ângulos $\alpha = 30^{\circ}$ e $\beta = 50^{\circ}$. Os dipolos dos *arrays* TX e RX são paralelos ao plano da página. As condições de propagação da onda EM se aproximam da propagação no espaço livre. A impedância de entrada do amplificador no *front-end* de RF do RX é Z_{in} RX =50–*j*10 [Ω], conforme mostrado em (C). **Pede-se: (a)** Determine a magnitude da componente E_{θ} do campo elétrico e o módulo *S* do vetor de Poynting gerados nas vizinhanças próximas do *array* RX pela onda EM irradiada pelo *array* TX. **(b)** Determine a área de recepção A_{RX} através da qual o *array* RX extrai potência das frentes de onda da onda EM que nele incide proveniente do *array* TX. **(c)** Determine a tensão de pico V_x nos terminais do *array* RX. **(d)** Plote em dois gráficos polares o contorno do campo E_{θ} respectivamente nos planos *E* e *H* gerados pelo *array* TX a uma distância r = 10 [km] de seu centro de fase.

Cap II.2 – Phased Arrays

80

Solução:

Do enunciado: $\alpha := 30^{\circ}$ $\beta := 50^{\circ}$ \rightarrow orientação angular respectivamente dos arrays TX e RX $f := 435 \cdot MHz \rightarrow \lambda := \frac{c}{f} = 0.689m$ $r := 10 \cdot km \rightarrow distância entre os centros de fase (origem dos respectivos sistemas transformation de fase)$ cartesianos) dos arrays TX e RX. (0.379) $L = \begin{bmatrix} 0.338 \\ 0.317 \\ K-1, \text{ sendo } K=4 \text{ o número de dipolos no array. Os índices } k=0,1\cdots 3 \text{ referem-se respectivamente aos} \end{bmatrix}$ elementos R.E.D1 e D2 do phased array mostrado em (A) no enunciado. $K := \text{length}(L) = 4 \rightarrow \text{número de dipolos no array}$ $ZinRX := (50 - j \cdot 10)\Omega \rightarrow$ Impedância de entrada do amplificador no $R = \begin{vmatrix} 2 \\ 2 \\ 2 \end{vmatrix} \cdot mm \rightarrow raio "a" do condutor cilíndrico dos dipolos do array$ front-end de RF do RX. $P := 50W \rightarrow$ potência medida nos terminais de entrada do array TX. $C = \begin{pmatrix} -4.824 & 0 & 0 \\ 0 & 0 & 0 \\ 9.648 & 0 & 0 \\ 24.121 & 0 & 0 \end{pmatrix} \cdot cm \qquad \rightarrow \text{ cada k-ésima linha da matriz C é a coordenada } \begin{pmatrix} x_k & y_k & z_k \end{pmatrix} \text{ do k-ésimo dipolo do array, k=0,1 } \cdots$ $\eta := 120 \pi \Omega = 376.991 \Omega$ \rightarrow impedância de propagação da onda EM no espaço livre K-1, sendo K = 4 . Os índices k= 0,1 ··· 3 referem-se respectivamente aos elementos R,E,D1 e D2 do phased array mostrado em (A) no enunciado.

Se os índices a e b são iguais (a=b) determina a impedância própria Z_{a,a}, e se forem diferentes determina a impedância mútua Z_{a,b}:

$$Z_{a,b} := if\left(a = b, Zin_Schelkunoff\left(\frac{R_a}{mm}, \frac{\lambda}{m}, \frac{L_a}{m}\right), ZMutual_Schelkunoff\left(\frac{L_a}{m}, \frac{L_b}{m}, \frac{R_a}{mm}, \frac{R_b}{mm}, \frac{S_{a,b}}{m}, \frac{\lambda}{m}\right)\right)$$

Portanto, a matriz impedância Z entre os dipolos resulta em:

$$Z = \begin{pmatrix} 110.9539 + 123.8122i & 91.449 + 17.4977i & 56.1625 - 17.8522i & 1.6489 - 30.8939i \\ 91.6816 + 25.5973i & 70.932 + 29.1885i & 55.1342 - 3.5413i & 15.0933 - 26.5213i \\ 55.8661 - 33.8338i & 55.1922 - 6.5623i & 56.8773 - 15.5319i & 36.3235 - 13.8975i \\ 1.5004 - 41.3884i & 15.2618 - 33.6674i & 36.4374 - 17.2729i & 49.0823 - 44.6978i \end{pmatrix}$$

onde os índices a e b dos elementos $z_{a,b}$ da matriz Z variam no intervalo $a,b = 0,1 \cdots 3$ e referem-se respectivamente aos elementos R,E,D1 e D2 do *phased array* mostrado em (A) no enunciado.

A relação matricial entre as tensões e as correntes no centro dos K = 4 dipolos é dada por:

$$\mathbf{V}_{-} = \begin{pmatrix} 0 \\ \mathbf{V}_{e} \\ 0 \\ 0 \end{pmatrix} = Z \cdot \mathbf{I} = \begin{pmatrix} Z_{00} & Z_{01} & Z_{02} & Z_{03} \\ Z_{10} & Z_{11} & Z_{12} & Z_{13} \\ Z_{20} & Z_{21} & Z_{22} & Z_{23} \\ Z_{30} & Z_{31} & Z_{32} & Z_{33} \end{pmatrix} \begin{pmatrix} \mathbf{I}_{r} \\ \mathbf{I}_{e} \\ \mathbf{I}_{d1} \\ \mathbf{I}_{d2} \end{pmatrix}$$

Note nesta relação matricial que a tensão é não nula somente no elemento excitador "E", dado que não há terminais nos demais elementos passivos do *array*, o que equivale aos seus terminais estarem curto-circuitados, e, portanto, alimentados por uma tensão nula.

Todo *array* apresenta um comportamento linear com relação as suas correntes, tensões, campos H e campos E. Portanto a impedância de entrada do elemento excitador "E", dada por $Ze = \frac{Ve}{Ie}$, é um valor constante que independe do valor da tensão Ve aplicada aos terminais do elemento. Neste contexto, seja uma tensão de teste Ve := 1V aplicada nos terminais de entrada do *array* TX apenas para efeito de

determinar a sua impedância de entrada Ze. Da relação matricial acima temos:

$$\begin{pmatrix} Ir \\ Ie \\ Id1 \\ Id2 \end{pmatrix} := Z^{-1} \cdot \begin{pmatrix} 0 \\ Ve \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 3.693 + 11.41i \\ 23.425 - 23.243i \\ -39.119 - 9.184i \\ 7.54 + 25.979i \end{pmatrix} \cdot mA \qquad E daí Ze := \frac{Ve}{Ie} = (21.512 + 21.344i) \cdot \Omega .$$

Comunicações Estratégicas

Do enunciado, o transmissor entrega uma potência $P = \left(\frac{Ie}{\sqrt{2}}\right)^2 \cdot Re(Ze)$ aos terminais do elemento excitador "E", onde $P = 50 \cdot W$. Resolvendo esta equação para Ie, obtemos o valor de pico no tempo da corrente Ie nos terminais do elemento excitador "E":

Ie :=
$$\sqrt{\frac{2 \cdot P}{\text{Re}(\text{Ze})}} = 2.156 \text{ A}$$

Daí, a tensão resultante nos terminais do elemento excitador "E" é:

Ve := Ze·Ie = $(46.381 + 46.019i) \cdot V$ |Ve| = $65.337 \cdot V$ arg(Ve) = $44.776 \cdot °$

E da relação matricial entre as tensões e as correntes no centro dos K = 4 dipolos (ver acima), obtemos o valor das referidas correntes quando o *phased-array* é excitado por uma potência $P = 50 \cdot W$:

$$\begin{pmatrix} Ir \\ Ie \\ Id1 \\ Id2 \end{pmatrix} := Z^{-1} \cdot \begin{pmatrix} 0 \\ Ve \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -0.354 + 0.699i \\ 2.156 \\ -1.392 - 2.226i \\ -0.846 + 1.552i \end{pmatrix} \cdot A \rightarrow Ii := \begin{pmatrix} Ir \\ Ie \\ Id1 \\ Id2 \end{pmatrix} \rightarrow \overrightarrow{|Ii|} = \begin{pmatrix} 0.784 \\ 2.156 \\ 2.625 \\ 1.767 \end{pmatrix} A \overrightarrow{arg(Ii)} = \begin{pmatrix} 116.842 \\ -5.901 \times 10^{-15} \\ -122.011 \\ 118.591 \end{pmatrix} \cdot \circ$$

Convertendo as correntes Ii no centro dos respectivos dipolos para as correntes de radiação Io dos respectivos dipolos através da equação (33) do slide 16, obtemos:

Dividindo a equação (14) do slide (68) por $e^{j \cdot \omega \cdot t}$ convertemos a equação para sua forma fasorial e obtemos o fasor da componente E θ do campo elétrico gerado pelo *array* de K = 4 dipolos no ponto $p(r, \theta, \phi)$ do espaço \mathbb{R}^3 :

$$E\theta(_Io, r, \theta, \phi, _L, _C) := \sum_{k=0}^{K-1} \begin{bmatrix} j \cdot \frac{2\pi}{\lambda} \cdot \left[\left(_C^{(0)} \right)_{k} \cdot \sin(\theta) \cdot \cos(\phi) & \dots \\ + \left(_C^{(1)} \right)_{k} \cdot \sin(\theta) \cdot \sin(\phi) & \dots \\ + \left(_C^{(2)} \right)_{k} \cdot \cos(\theta) \end{bmatrix} \cdot \left[\frac{\cos\left(\frac{\pi \cdot _L_{k}}{\lambda} \cdot \cos(\theta)\right) - \cos\left(\frac{\pi \cdot _L_{k}}{\lambda}\right)}{\sin(\theta)} \right] \end{bmatrix} \cdot \frac{60 \cdot \Omega}{r} \cdot e^{j \cdot \left(\frac{-2\pi}{\lambda} \cdot r + \frac{\pi}{2}\right)}$$
(14)

onde $\left[\left(\underline{C}^{(0)}\right)_{k}\left(\underline{C}^{(1)}\right)_{k}\left(\underline{C}^{(2)}\right)_{k}\right]$ corresponde à coordenada $\left(x_{k} \ y_{k} \ z_{k}\right)$ do centro do k-ésimo dipolo do *array*.

De (14), a componente E0 do campo elétrico gerado pelo array TX nas vizinhanças próximas do array RX é:

$$E\theta arrayTX := E\theta(Io, r, 90^{\circ} - \alpha, 0^{\circ}, L, C) \rightarrow |E\theta arrayTX| = 14.077 \cdot \frac{mV}{m} \qquad arg(E\theta arrayTX) = 17.784 \cdot ^{\circ}$$

Da discussão nos slides 34 e 35 obtemos o módulo S do vetor de Poynting gerado nas vizinhanças próximas do array RX pela onda EM irradiada pelo array TX:

$$S := \frac{\left(\left|E\theta arrayTX\right|\right)^{2}}{2 \cdot \eta} = 0.263 \cdot \frac{\mu W}{m^{2}}$$

(b) Se alimentarmos o array RX com uma potência $P = 50 \cdot W$, o mesmo irradiará uma onda EM na direção $\theta rx := 90^{\circ} - \beta = 40 \cdot ^{\circ}$ que aponta para o *array* TX. E daí, da equação (14) obtemos o valor para a magnitude da componente E θ do campo elétrico por ele gerado nas vizinhanças do *array* TX:

 $E\theta rx := E\theta(Io, r, 90^{\circ} - \beta, 0^{\circ}, L, C) \rightarrow |E\theta rx| = 6.897 \cdot \frac{mV}{m} \quad arg(E\theta rx) = 1.844 \cdot \circ$

Se substituirmos o *array* RX por uma antena isotrópica e alimentarmos a isotrópica com a mesma potência $P = 50 \cdot W$ que alimentamos o *array* RX, obtemos o valor da magnitude da componente E θ do campo elétrico gerado pela isotrópica nas vizinhanças do *array* TX (ver equação (39) no slide 35):

$$E\theta_Iso := \frac{\sqrt{60 \cdot \Omega \cdot P}}{r} = 5.477 \cdot \frac{mV}{m}$$

E, portanto, o ganho de potência do array RX em relação à antena isotrópica na direção θrx = 40.° é dado por:

$$\operatorname{Grx} := \left(\frac{|\operatorname{E}\Theta_{\mathrm{rx}}|}{\operatorname{E}\Theta_{\mathrm{Iso}}}\right)^2 = 1.586 \quad \text{vezes} \quad \rightarrow \quad \operatorname{GrxdBi} := 10 \cdot \log(\operatorname{Grx}) = 2 \, \, \mathrm{dBi}$$

E daí, a área de recepção Arx através da qual o *array* RX extrai potência das frentes de onda da onda EM que nele incide proveniente do *array* TX é dada pela equação (41) do slide 44:

Arx :=
$$\operatorname{Grx} \cdot \frac{\lambda^2}{4 \cdot \pi} = 599.301 \cdot \operatorname{cm}^2$$

(C) Da equação (35) do slide 17:

Do divisor de tensão no equivalente de Thévenin acima obtemos o valor de pico da tensão Vx:

 $Vx:=\frac{\sqrt{2} \cdot Voc \cdot ZinRX}{Ze + ZinRX} = (1.088 - 0.403) \cdot mV \qquad |Vx| = 1.16 \, mV \qquad (pk)$

(d) Da equação (14), o contorno no plano *E* do campo elétrico $|E_{\theta}|$ em [mV/m] a uma distância $r = 10 \cdot \text{km}$ é:

Da equação (14), o contorno no plano H do campo elétrico $|E_{\theta}|$ em [mV/m] a uma distância $r = 10 \cdot \text{km}$ é:

Exemplo 8: Um enlace operando em $f_0 = 470$ [MHz] é estabelecido entre dois refletores de canto idênticos com abertura $\alpha = 90^{\circ}$ (ver https://en.wikipedia.org/wiki/Corner reflector antenna) distantes entre si de r = 350 [Km], conforme mostrado em (A) abaixo, sendo as condições de propagação da onda EM próximas da propagação no espaço livre. Um refletor de canto consiste de uma chapa condutora dobrada de um ângulo α (usualmente 90°) em que um dipolo A_0 de comprimento L é posicionado a uma distância s do vértice do refletor, sendo o dipolo perpendicular ao plano da página conforme mostrado em (A). A chapa dobrada é geralmente substituída por um conjunto de varetas metálicas próximas entre si ($\leq 0.1\lambda$) e paralelas ao dipolo A_0 para efeito de minimizar o arrasto aerodinâmico do vento (ver http://www.arrowantennas.com/solid/cr4501.html). Ocorre que o campo elétrico tangencial Et é nulo em qualquer superfície condutora (ver https://en.wikipedia.org/wiki/Method_of_images) de modo que o refletor em (A) pode ser equivalentemente substituído pelo array de dipolos A_0 , A_1 , A_2 e A_3 , onde os dipolos A_1 , A_2 e A_3 são imagens virtuais do dipolo A_0 . As imagens $A_1 e A_3$ são cada uma alimentadas por uma corrente de mesma magnitude mas defasada de 180° da corrente do dipolo A_0 e a imagem A_2 é alimentada em fase com mesma magnitude, resultando $E_t = 0$ em cada ponto do espaço \mathbb{R}^3 onde estava o refletor. Um amplificador de RF é conectado aos terminais do dipolo A_0 do array RX sendo $Z_{in}RX = 300 + i0$ [Ω] a impedância de entrada do amplificador. **Pede-se: (a)** Determine a magnitude da componente E_{θ} do campo elétrico e o módulo S do vetor de Poynting gerados nas vizinhanças próximas do array RX pela onda EM irradiada pelo array TX. (b) Determine a área de recepção A_{RX} através da qual o array RX extrai potência das frentes de onda da onda EM que nele incide proveniente do array TX. (c) Determine a tensão de pico V_x nos terminais do array RX. (d) Plote em dois gráficos polares o contorno do campo E_{θ} respectivamente nos planos E e H gerados pelo array TX a uma distância r = 350 [km] de seu centro de fase.

Solução:

Do enunciado:

 $f := 470 \text{ MHz} \rightarrow \lambda := \frac{c}{f} = 0.638 \text{m}$ $r := 350 \text{ km} \rightarrow \text{distância entre os centros de fase (origem dos respectivos sistemas contexionos) dos armus TX o PX$ cartesianos) dos arrays TX e RX.

 $s = 98.868cm \rightarrow distância do diplo A_0 ao vértice do refletor.$ 70.164

 $L = \begin{bmatrix} 70.164 \\ 70.164 \\ 70.164 \end{bmatrix} \cdot cm \rightarrow cada k-ésima componente do vetor L corresponde ao comprimento do k-ésimo dipolo do$ *array* $, k=0,1 \cdots K-1$, sendo K=4 o número de dipolos no *array*. Os índices k= 0,1 \cdots 3 referem-se respectivamente aos elementos A_0 , A_1 , $A_2 e A_3$ do *phased array* mostrado em (A) no enunciado.

$$K_{\text{L}} := \text{length}(L) = 4 \rightarrow \text{número de dipolos no array}$$

 $ZinRX := (300 + j \cdot 0)\Omega \rightarrow$ Impedância de entrada do amplificador no $R = \begin{pmatrix} 5 \\ 5 \\ 5 \\ 5 \end{pmatrix} \cdot mm \rightarrow raio "a" do condutor cilíndrico dos dipolos do array$ $P := 325W \rightarrow potência medida nos terminais de entrada do array TX.$

 $C = \begin{pmatrix} 98.868 & 0 & 0 \\ 0 & 98.868 & 0 \\ -98.868 & 0 & 0 \\ 0 & -98.868 & 0 \\ 0 & -9$ K-1, sendo K = 4 . Os índices k= 0,1 ··· 3 referem-se respectivamente aos elementos $A_0, A_1, A_2 \in A_3$

do phased array mostrado em (A) no enunciado.

Se os índices a e b são iguais (a=b) determina a impedância própria Z_{a,a}, e se forem diferentes determina a impedância mútua Z_{a,b}:

$$Z_{a,b} := if\left(a = b, Zin_Schelkunoff\left(\frac{R_a}{mm}, \frac{\lambda}{m}, \frac{L_a}{m}\right), ZMutual_Schelkunoff\left(\frac{L_a}{m}, \frac{L_b}{m}, \frac{R_a}{mm}, \frac{R_b}{mm}, \frac{S_{a,b}}{m}, \frac{\lambda}{m}\right)\right)$$

Portanto, a matriz impedância Z entre os dipolos resulta em:

$$Z = \begin{pmatrix} 344.4984 - 404.095i & 31.293 + 67.6347i & -12.6163 + 53.9693i & 31.293 + 67.6347i \\ 31.293 + 67.6347i & 344.4984 - 404.095i & 31.293 + 67.6347i & -12.6163 + 53.9693i \\ -12.6163 + 53.9693i & 31.293 + 67.6347i & 344.4984 - 404.095i & 31.293 + 67.6347i \\ 31.293 + 67.6347i & -12.6163 + 53.9693i & 31.293 + 67.6347i & 344.4984 - 404.095i \end{pmatrix}$$

onde os índices a e b dos elementos $z_{a,b}$ da matriz Z variam no intervalo $a,b = 0,1 \cdots 3$ e referem-se respectivamente aos elementos $A_0, A_1, A_2 \in A_3$ do *phased array* mostrado em (A) no enunciado.

A relação matricial entre as tensões e as correntes no centro dos K = 4 dipolos é dada por:

$$\mathbf{V}_{-} = \begin{pmatrix} \mathbf{V}0 \\ -\mathbf{V}0 \\ \mathbf{V}0 \\ -\mathbf{V}0 \end{pmatrix} = \mathbf{Z} \cdot \mathbf{I} = \begin{pmatrix} \mathbf{Z}_{00} & \mathbf{Z}_{01} & \mathbf{Z}_{02} & \mathbf{Z}_{03} \\ \mathbf{Z}_{10} & \mathbf{Z}_{11} & \mathbf{Z}_{12} & \mathbf{Z}_{13} \\ \mathbf{Z}_{20} & \mathbf{Z}_{21} & \mathbf{Z}_{22} & \mathbf{Z}_{23} \\ \mathbf{Z}_{30} & \mathbf{Z}_{31} & \mathbf{Z}_{32} & \mathbf{Z}_{33} \end{pmatrix} \begin{pmatrix} \mathbf{I}0 \\ \mathbf{I}1 \\ \mathbf{I}2 \\ \mathbf{I}3 \end{pmatrix}$$

Note nesta relação matricial que as componentes do vetor de tensão decorrem da condição apresentada no enunciado em que as imagens A_1 e A_3 são cada uma alimentadas por uma corrente de mesma magnitude mas defasada de 180° da corrente do dipolo A_0 e a imagem A_2 é alimentada em fase com mesma magnitude.

Todo *array* apresenta um comportamento linear com relação as suas correntes, tensões, campos H e campos E. Portanto a impedância de entrada do dipolo A_0 , dada por $Ze = \frac{V0}{I0}$, é um valor constante que independe do valor da tensão Ve aplicada aos terminais do elemento.

Neste contexto, seja uma tensão de teste V0 := 1V aplicada nos terminais de entrada do array TX apenas para efeito de determinar a sua impedância de entrada Ze. Da relação matricial acima temos:

$$\begin{pmatrix} I0\\ I1\\ I2\\ I3 \end{pmatrix} := Z^{-1} \cdot \begin{pmatrix} V0\\ -V0\\ V0\\ -V0 \end{pmatrix} = \begin{pmatrix} 0.874 + 1.575i\\ -0.874 - 1.575i\\ 0.874 + 1.575i\\ -0.874 - 1.575i \end{pmatrix} \cdot mA \quad \mathsf{E} \,\mathsf{da}i \, \mathsf{Ze} := \frac{V0}{I0} = (269.296 - 485.395i) \cdot \Omega \ .$$
 (alternativamente, Ze pode ser determinado pela técnica discutida no slide 32)

Comunicações Estratégicas

Cap II.2 – *Phased Arrays*

Do enunciado, o transmissor entrega uma potência $P = \left(\frac{Ie}{\sqrt{2}}\right)^2 \cdot Re(Ze)$ aos terminais do dipolo A, onde $P = 325 \cdot W$. Resolvendo esta

equação para Ie, obtemos o valor de pico no tempo da corrente Ie nos terminais do elemento A0:

$$Ie := \sqrt{\frac{2 \cdot P}{Re(Ze)}} = 1.554 \text{ A}$$

Daí, a tensão resultante nos terminais do elemento A_0 é:

 $Ve := Ze \cdot Ie = (418.381 - 754.114i) \cdot V$ $|Ve| = 862.398 \cdot V$ $arg(Ve) = -60.979 \cdot \circ$

E da relação matricial entre as tensões e as correntes no centro dos K = 4 dipolos (ver acima), obtemos o valor das referidas correntes quando o *phased-array* é excitado por uma potência $P = 325 \cdot W$:

Convertendo as correntes Ii no centro dos respectivos dipolos para as correntes de radiação Io dos respectivos dipolos através da equação (33) do slide 16, obtemos:

Dividindo a equação (14) do slide (68) por $e^{j \cdot \omega \cdot t}$ convertemos a equação para sua forma fasorial e obtemos o fasor da componente E θ do campo elétrico gerado pelo *array* de K = 4 dipolos no ponto $p(r, \theta, \phi)$ do espaço \mathbb{R}^3 :

$$E\theta(_lo, r, \theta, \phi, _L, _C) \coloneqq \sum_{k=0}^{K-1} \begin{bmatrix} j \cdot \frac{2\pi}{\lambda} \cdot \left[\left(_C^{(0)} \right)_{k} \cdot \sin(\theta) \cdot \cos(\phi) & \dots \\ + \left(_C^{(1)} \right)_{k} \cdot \sin(\theta) \cdot \sin(\phi) & \dots \\ + \left(_C^{(2)} \right)_{k} \cdot \cos(\theta) \end{bmatrix} \cdot \left[\frac{\cos\left(\frac{\pi \cdot _L_{k}}{\lambda} \cdot \cos(\theta)\right) - \cos\left(\frac{\pi \cdot _L_{k}}{\lambda}\right)}{\sin(\theta)} \right] \end{bmatrix} \cdot \frac{60 \cdot \Omega}{r} \cdot e^{j \cdot \left(\frac{-2\pi}{\lambda} \cdot r + \frac{\pi}{2}\right)}$$
(14)

onde $\left[\left(\begin{array}{c} C^{(0)} \end{array} \right)_k \left(\begin{array}{c} C^{(1)} \end{array} \right)_k \left(\begin{array}{c} C^{(2)} \end{array} \right)_k \right]$ corresponde à coordenada $\left(\begin{array}{c} x_k & y_k & z_k \end{array} \right)$ do centro do k-ésimo dipolo do *array*.

De (14), a componente E0 do campo elétrico gerado pelo array TX nas vizinhanças próximas do array RX é:

$$E\theta arrayTX := E\theta(Io, r, 90^{\circ}, 0^{\circ}, L, C) \longrightarrow |E\theta arrayTX| = 6.562 \cdot \frac{mV}{m} \qquad arg(E\theta arrayTX) = 112.824 \cdot ^{\circ}$$

Da discussão nos slides 34 e 35 obtemos o módulo S do vetor de Poynting gerado nas vizinhanças próximas do *array* RX pela onda EM irradiada pelo *array* TX:

$$S := \frac{\left(\left|E\theta arrayTX\right|\right)^2}{2 \cdot \eta} = 0.057 \cdot \frac{\mu W}{m^2}$$

(b) Se alimentarmos o array RX com uma potência $P = 325 \cdot W$, o mesmo irradiará uma onda EM na direção ($\theta rx := 90^{\circ} \phi rx := 0^{\circ}$) que aponta para o *array* TX. E daí, da equação (14) obtemos o valor para a magnitude da componente E θ do campo elétrico por ele gerado nas vizinhanças do *array* TX:

 $E\theta rx := E\theta(Io, r, \theta rx, \phi rx, L, C) \rightarrow |E\theta rx| = 6.562 \cdot \frac{mV}{m} \quad arg(E\theta rx) = 112.824 \cdot \circ$

Se substituirmos o *array* RX por uma antena isotrópica e alimentarmos a isotrópica com a mesma potência $P = 325 \cdot W$ que alimentamos o *array* RX, obtemos o valor da magnitude da componente E0 do campo elétrico gerado pela isotrópica nas vizinhanças do *array* TX (ver equação (39) no slide 35):

$$E\theta_Iso := \frac{\sqrt{60 \cdot \Omega \cdot P}}{r} = 0.399 \cdot \frac{mV}{m}$$

E, portanto, o ganho de potência do array RX em relação à antena isotrópica na direção (θrx := 90° ϕrx := 0°) é dado por:

$$\operatorname{Grx} := \left(\frac{|\operatorname{E}\theta_{\mathrm{rx}}|}{\operatorname{E}\theta_{-}\operatorname{Iso}}\right)^{2} = 270.474 \text{ vezes} \rightarrow \operatorname{GrxdBi} := 10 \cdot \log(\operatorname{Grx}) = 24.3 \text{ dBi}$$

E daí, a área de recepção Arx através da qual o *array* RX extrai potência das frentes de onda da onda EM que nele incide proveniente do *array* TX é dada pela equação (41) do slide 44:

Arx :=
$$\operatorname{Grx} \cdot \frac{\lambda^2}{4 \cdot \pi} = 8.757 \cdot \mathrm{m}^2$$

(C) Da equação (35) do slide 17:

Do divisor de tensão no equivalente de Thévenin acima obtemos o valor de pico da tensão Vx:

 $Vx:=\frac{\sqrt{2} \cdot Voc \cdot ZinRX}{Ze + ZinRX} = (10.015 + 8.539) \cdot mV \qquad |Vx| = 13.162 mV \quad (pk)$

(d) Da equação (14), o contorno no plano *E* do campo elétrico $|E_{\theta}|$ em [mV/m] a uma distância $\mathbf{r} = 350 \cdot \mathbf{km}$ é:

 $\mathbf{N} \coloneqq 1000 \quad \mathbf{n} \coloneqq \mathbf{0} \dots \mathbf{N} - 1 \quad \mathbf{\theta}_{\mathbf{n}} \coloneqq \mathbf{\pi} \cdot \frac{\mathbf{n}}{\mathbf{N}} \quad \mathbf{\phi}_{\mathbf{n}} \coloneqq \frac{-\mathbf{\pi}}{4} + \frac{\mathbf{\pi}}{2} \cdot \frac{\mathbf{n}}{\mathbf{N}}$

<u>Nota</u>: A variação dos ângulos $\theta \in \phi$ deve cobrir apenas a variação angular do refletor, isto é, 0° < θ < 180° e -45° < ϕ < 45°, dado que idealmente não há campo E θ irradiado para trás do refletor.

Da equação (14), o contorno no plano H do campo elétrico $|E_{\theta}|$ em [mV/m] a uma distância r = 350·km é:

ULA – Uniform Linear Array

Passamos agora a analisar o phased array denominado ULA (Uniform Linear Array), em que os elementos (dipolos) são paralelos ao eixo z e estão distribuídos uniformemente ao longo do eixo x estando separados entre si de uma distância d, conforme mostrado em (A) abaixo. Cada k-ésimo dipolo dentre os K dipolos totais do array é percorrido pela corrente de radiação I_k , sendo $k = 0,1 \cdots K - 1$. Se for desejado determinar as tensões V_k nos terminais dos dipolos a partir das cor-

ULA – Uniform Linear Array

A partir de (19) no slide anterior, nos próximos slides plotaremos o diagrama de irradiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}}$ de ULAs conforme (A) abaixo para diversos conjuntos de correntes de radiação I_k , $k = 0, 1 \cdots K - 1$, sendo K o número de dipolos no *array*. Para cada ULA e respectiva distribuição de corrente I_k são plotados dois gráficos polares para $F(\theta, \phi)$, ambos obtidos de (19).

ULA de K = 2 dipolos com correntes defasadas de 90°

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}} p/\theta = 90^{\circ} e \ 0 \le \phi < 360^{\circ}$ de um *array* de K = 2 dipolos de tamanho $L = \lambda/2$ separados de $d = \lambda/4$. A corrente de radiação em cada dipolo $k \notin I_k = IMag_k e^{jIPhase_k}$ [A], $k = 0, 1, \dots, K - 1$.

Comunicações Estratégicas

ULA de K = 2 dipolos com correntes defasadas de 90°

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}}$ para o ULA com correntes de radiação $I_k = \text{IMag}_k e^{j\text{IPhase}_k}$ [A] especificadas no slide anterior, $k = 0, 1, \dots, K - 1, K = 2$. As curvas de $F(\theta, \phi)$ são obtidas para p/ $\theta = \{18^\circ, 36^\circ, 54^\circ, 72^\circ, 90^\circ\}$ e $0 \le \phi < 360^\circ$.

ULA de K = 4 dipolos com correntes determinadas por *beamforming*

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}} p/\theta = 90^{\circ} e \ 0 \le \phi < 360^{\circ}$ de um *array* de K = 4 dipolos de tamanho $L = \lambda/2$ separados de $d = \lambda/4$. A corrente de radiação em cada dipolo $k \notin I_k = IMag_k e^{jIPhase_k}$ [A], $k = 0, 1, \dots, K - 1$.

 $IMag_k \in a k$ -ésima componente do vetor $IMag := (0.555 \ 1 \ 1 \ 0.555)^T [A].$

IPhase_k é a k-ésima componente do vetor IPhase := $(5.782 \ 97.233 \ 172.767 \ -95.782)^{T}$ [°].

correntes I_k deste ULA foram As determinadas com o auxílio do algoritmo para beamforming que estudaremos adiante no Cap II.3. Conforme veremos adiante, o algoritmo é adaptativo e tem como parâmetros de entrada as M direções (θ_m, ϕ_m) , $m = 0, 1 \cdots M - 1$, onde são posicionados M "sensores" S_m do campo E_{θ} a uma distância $r > 10\lambda$ comum a todos os "sensores". Para cada direção (θ_m, ϕ_m) é especificado o valor do $|E_{\theta}|$ que o sensor S_m deve "medir". Para o ULA em questão foram especificados M = 4 sensores, devendo "medir" $|E_{\theta}|$ nulo nas direções $(90^{\circ}, 0^{\circ}), (90^{\circ}, 60^{\circ})$ e $(90^{\circ}, 300^{\circ})$ e $|E_{\theta}|$ máximo na direção (90°, 180°). O algoritmo é executado iterativamente até o erro entre o valor do $|E_{\theta}|$ desejado e o valor que os sensores S_m "medem" alcance o valor de erro desejado ou até o número máximo de iterações ser atingido. Note que as correntes I_k resultantes minimizam significativamente os backlobes na metade posterior do hemisfério ($90^\circ \le \phi \le 270^\circ$).

Comunicações Estratégicas

ULA de K = 4 dipolos com correntes determinadas por *beamforming*

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}}$ para o ULA com correntes de radiação $I_k = \text{IMag}_k e^{j\text{IPhase}_k}$ [A] especificadas no slide anterior, $k = 0, 1, \dots, K - 1, K = 4$. As curvas de $F(\theta, \phi)$ são obtidas para p/ $\theta = \{18^\circ, 36^\circ, 54^\circ, 72^\circ, 90^\circ\}$ e $0 \le \phi < 360^\circ$.

ULA binomial de *K* = 7 dipolos com correntes determinadas pelos coeficientes da Série Binomial

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}} p/\theta = 90^{\circ} e \ 0 \le \phi < 360^{\circ}$ de um *array* de K = 7 dipolos de tamanho $L = \lambda/2$ separados de $d = \lambda/2$. A corrente de radiação em cada dipolo $k \notin I_k = IMag_k e^{jIPhase_k}$ [A], $k = 0, 1, \dots, K - 1$.

 IMag_k é a k-ésima componente do vetor $\operatorname{IMag} := (1 \ 6 \ 15 \ 20 \ 15 \ 6 \ 1)^T$ [A]. IPhase_k é a k-ésima componente do vetor $\operatorname{IPhase} := (0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0)^T$ [°].

 $|E_{\theta}|_{\text{norm}}$ HPBW= 25° 90 Note que o ULA binomial apresenta uma distribuição 120 - 1/2 de intensidade de corrente $IMag_k$ [A], k = $0,1,\cdots,K-1$, que obedece aos coeficientes da Série 7 Dipolos Binomial, dados pelo Triângulo de Pascal: 30 150 2 1 15 20 15 1 I_2 I_5 I_4 I_6 I_3 180 0 $d = \lambda/2$ Note que este ULA tem maior irradiação na direção 210 transversal. Por isto, denomina-se este tipo de array de Array Transversal (Broadside Array). Por outro lado, ULAs que apresentam maior irradiação na direção longitudinal (direção do eixo ao longo do 240 300 qual os dipolos são posicionados) denomina-se Array Longitudinal (Endfire Array). φ 270

Comunicações Estratégicas
ULA binomial de K = 7 dipolos com correntes determinadas pelos coeficientes da Série Binomial

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}}$ para o ULA com correntes de radiação $I_k = \text{IMag}_k e^{j\text{IPhase}_k}$ [A] especificadas no slide anterior, $k = 0, 1, \dots, K - 1, K = 7$. As curvas de $F(\theta, \phi)$ são obtidas para p/ $\theta = \{18^\circ, 36^\circ, 54^\circ, 72^\circ, 90^\circ\}$ e $0 \le \phi < 360^\circ$.

ULA broadside de K = 20 dipolos com distribuição de corrente uniforme

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}} p/\theta = 90^{\circ} e \ 0 \le \phi < 360^{\circ}$ de um *array* de K = 20 dipolos de tamanho $L = \lambda/2$ separados de $d = \lambda/2$. A corrente de radiação em cada dipolo $k \notin I_k = \text{IMag}_k e^{j\text{IPhase}_k}$ [A], $k = 0, 1, \dots, K - 1$.

ULA broadside de K = 20 dipolos com distribuição de corrente uniforme

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}}$ para o ULA com correntes de radiação $I_k = \text{IMag}_k e^{j\text{IPhase}_k}$ [A] especificadas no slide anterior, $k = 0, 1, \dots, K - 1$, K = 20. As curvas de $F(\theta, \phi)$ são obtidas para p/ $\theta = \{18^\circ, 36^\circ, 54^\circ, 72^\circ, 90^\circ\}$ e $0 \le \phi < 360^\circ$.

ULA endfire de K = 40 dipolos com distribuição de magnitude das correntes uniforme e fases em quadratura Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}} p/\theta = 90^{\circ} e \ 0 \le \phi < 360^{\circ}$ de um array de K = 40 dipolos de tamanho L = $\lambda/2$ separados de $d = \lambda/4$. A corrente de radiação em cada dipolo $k \notin I_k = \text{IMag}_k e^{j\text{IPhase}_k}$ [A], $k = 0, 1, \dots, K - 1$.

IPhase :- (0 - 90 180 90 0 - 9

ULA endfire de K = 40 dipolos com distribuição de magnitude das correntes uniforme e fases em quadratura

Diagrama de radiação $F(\theta, \phi) = |E_{\theta}|_{\text{norm}}$ para o ULA com correntes de radiação $I_k = \text{IMag}_k e^{j\text{IPhase}_k}$ [A] especificadas no slide anterior, $k = 0, 1, \dots, K - 1$, K = 40. As curvas de $F(\theta, \phi)$ são obtidas para p/ $\theta = \{18^\circ, 36^\circ, 54^\circ, 72^\circ, 90^\circ\}$ e $0 \le \phi < 360^\circ$.

Electronic Steered Array (= Electronic Scanned Array)

Conforme discutimos nos slides 53 e 54, o controlador do *phased array* (ver (A) abaixo) tem gravado em uma LUT (*look up table*) interna o conjunto de parâmetros de controle $\alpha \in \theta$ que determina as tensões aplicadas em cada dipolo do *array* e que, por sua vez, determina as correntes de entrada e de radiação em cada respectivo dipolo (ver solução do item (a) do Exemplo 6 no slide 69). Portanto, em última análise, o conjunto de parâmetros $\alpha \in \theta$ forma o lobo principal do *phased array* através do conjunto de magnitudes e fases das respectivas correntes de radiação, maximizando o ganho do diagrama de irradiação do *array* na direção β (ver (A) abaixo), conforme pudemos observar para os ULAs que analisamos nos slides 102 a 113. O conjunto de parâmetros de controle $\alpha \in \theta$ é determinado por algoritmos para *beamforming*, conforme brevemente discutimos no slide 106, e que estudaremos no Cap II.3.

A direção β do lobo principal é um parâmetro de entrada do bloco "controlador", que ajusta progressivamente os ângulos θ na LUT de forma a apontar o *boresight* na direção β desejada. O que vamos discutir nos próximos slides é de quais valores progressivos os ângulos θ na LUT devem ser acrescidos para que o lobo principal seja posicionado no ângulo β . Note que o conjunto de parâmetros $\alpha \in \theta$ que o algoritmo de *beamforming* determinou como ótimo no sentido de formar o lobo principal do *phased array* será apenas ajustado nos seu valores de θ , permanecendo inalterados os valores de α de modo ao formato de lobo principal ser mantido e apenas a direção β de seu *boresight* ser correspondentemente ajustada.

Electronic Steered Array (= Electronic Scanned Array)

Consideremos a equação (17) do slide 102, abaixo reproduzida por comodidade, a qual determina o campo E_{θ} de um ULA (*Uniform Linear Array*), conforme mostrado em (A) abaixo.

$$E_{\theta} = \sum_{k=0}^{K-1} I_{k} e^{j\frac{2\pi}{\lambda}(kd\sin\theta\cos\phi)} \left\{ \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta} \right\} \frac{60}{r} e^{j\left(-\frac{2\pi}{\lambda}r+\frac{\pi}{2}\right)} \left[\frac{V}{m}\right] \quad (17)$$
Re-escevendo (17) em uma forma algébrica conveniente, temos:

$$E_{\theta} = \chi \sum_{k=0}^{K-1} I_{k} |e^{j2\pi}(kd\sin\theta\cos\phi)| \left[\frac{V}{m}\right] \quad (17A)$$

$$\frac{\theta}{\mu} p(r, \theta, \phi)$$
Vamos supor que pudéssemos geometricamente girar em torno do eixo z e no plano xy è diagrama de irradiação $F(\theta, \phi) = E_{\theta}$, posicionando-o em um ângulo ϕ_{e} . Nesta situação hipotética para $\theta = 90^{\circ}$ (plano xy), o campo E_{θ} dado por (17A) resultaria:

$$V_{0} = \frac{1}{10} \frac{V_{0}}{\mu} \frac{V_{$$

Electronic Steered Array (= Electronic Scanned Array)

Beamforming é uma tecnologia presente em praticamente todos os atuais sistemas de comunicações. Por exemplo, em (A) abaixo é mostrada a concepção da rede de aplicações e serviços do sistema 5G, cuja multiplexação espacial dos usuários (SDMA – space division multiple access) é efetuada por técnicas de *beamforming* e técnicas MIMO (ver <u>http://www.fccdecastro.com.br/pdf/T2_Aulas27a29_08072020.pdf</u>). Conforme se observa, cada usuário móvel (ou não) de um determinado tipo de serviço (M2M – *machine-to-machine communications*, D2D – *device-to-device communications*, IOT – *internet of things*) é "iluminado" pelos lobos de irradiação do *phased-array* da *base station*, lobos que são reposicionados à medida que o usuário se move, evidenciando o alto grau de dinamicidade dos algoritmos STAP (ver <u>https://en.wikipedia.org/wiki/Space-time_adaptive_processing</u>) adotados no *beamformer* da *base station*.

Comunicações Estratégicas

Cap II.3 – Beamforming

Um *beamformer* para recepção é um processo adaptativo que ajusta através de um "Adaptive Algorithm" um conjunto de *K* coeficientes complexos "Antenna Weights", conforme mostrado em (A). Estes coeficientes ponderam os *K* sinais recebidos das respectivas antenas, sendo efetuado no somador Σ a combinação linear dos *K* sinais ponderados pelos respectivos coeficientes "Antenna Weights". O objetivo é iterativamente minimizar o sinal de erro "Error" entre a saída "Signal Output" e o sinal de referência "Reference Signal" transmitido pelo TX no início de cada *frame* do sistema de comunicação. Este processo adaptativo é idêntico ao descrito nos slides 47 a 49 de <u>http://www.fccdecastro.com.br/pdf/T2_Aulas16a20_27052020.pdf</u>, com a diferença de que lá os coeficientes ponderam a combinação linear de sinais separados no tempo e aqui os coeficientes ponderam a combinação linear de sinais separados no espaço (as antenas situam-se em coordenadas distintas no espaço \mathbb{R}^3). De fato, ambos os processos se enquadram na classe de algoritmos STAP (*Space_Time_Adaptive_Algorithm - https://en.wikipedia.org/wiki/Spacetime_adaptive_processing*).

Após um determinado número de iterações do processo adaptativo, o valor médio quadrático do erro "Error" é minimizado e o processo adaptativo converge. Nesta situação, o conjunto de coeficientes complexos "Antenna Weights" resultante é tal que os sinais se interferem construtivamente no somador Σ quando os mesmos incidem no *array* no DOA β do sinal desejado "Desired Signal", gerando o lobo principal do diagrama de irradiação do *array* (curva em magenta mostrada em (A)).

Ainda, após a convergência do processo adaptativo, os sinais que incidem no *array* no DOA ξ do sinal interferente "Interference Signal" (ver (A)) se interferem destrutivamente no somador Σ após a ponderação dos coeficientes, minimizando o ganho do diagrama de radiação na direção ξ . Note, portanto, que os coeficientes "Antenna Weights" determinam o diagrama de irradiação do *array*.

O processo adaptativo é usualmente efetuado digitalmente em banda-base. Mas, para efeito de simplificar o diagrama, não foi incluído em (A) o conversor A/D nem os detalhes do *downconverter*. Para uma implementação analógica com redes L–C (não-adaptativa), rever discussão no slide 3.

Em um *beamformer* para transmissão, conforme discutimos na introdução do slide 53, um vetor $\underline{w} = [\alpha_0 e^{j\zeta_0} \quad \alpha_1 e^{j\zeta_1} \quad \cdots \quad \alpha_{K-1} e^{j\zeta_{K-1}}]^T$ com os parâmetros de controle $\alpha_k e^{j\zeta_k}$ determina as correntes $I_k = |I_k|e^{j\zeta I_k}$ em cada *k*-ésima respectiva antena, formando o lobo principal e maximizando o ganho do diagrama de irradiação do *array* na direção β desejada para o *boresight*. Especificamente, para um *array* com *K* dipolos A_k , $k = 0, 1 \cdots K - 1$, conforme (A) abaixo, o bloco "Adaptive Algorithm" objetiva iterativamente minimizar um conjunto de *M* sinais de erro e_m , $m = 0, 1 \cdots M - 1$. Cada sinal de erro e_m é obtido da diferença entre o valor D_m que se deseja medir para E_{θ} a uma distância $r = r_S$ na direção (θ_m, ϕ_m) e o valor F_m de E_{θ} efetivamente medido pelo respectivo sensor S_m localizado no ponto $p(r_S, \theta_m, \phi_m)$, conforme mostrado em (A). A distância r_S do centro de fase do *array*, distância na qual situam-se os *M* sensores S_m , é usualmente um valor maior que 10 λ para que as medidas sejam feitas no *farfield* do *array*, evitando assim as particularidades que ocorrem no campo EM na região de *nearfield*. Para cada iteração, o "Adaptive Algorithm" ajusta os coeficientes $\alpha_k e^{j\zeta_k}$ no sentido da minimização do erro e_m .

Após um determinado número de iterações do processo adaptativo o valor médio quadrático dos M erros e_m é minimizado e o processo converge, sendo $m = 0, 1 \cdots M - 1$. Nesta situação, o vetor \underline{w} de coeficientes $\alpha_k e^{j\zeta_k}$ é tal que a amplitude e fase da corrente que alimenta a respectiva k-ésima antena, $k = 0, 1 \cdots K - 1$, gera uma onda EM que interfere construtivamente com as ondas EM geradas pelas demais K - 1 antenas do *array*, maximizando o ganho do diagrama de irradiação na direção β do lobo principal (*boresight*) e simultaneamente minimizando o ganho nos lobos secundários através de interferência destrutiva entre as ondas (curva em magenta mostrada em (A)). Para gerar o diagrama de irradiação desejado, o posicionamento angular (θ_m, ϕ_m) de cada um dos M sensores S_m e o respectivo valor D_m desejado para E_{θ} no ponto $p(r_S, \theta_m, \phi_m)$ deve obedecer a um critério coerente. Por exemplo, suponhamos que haja M = 4 sensores em (A) abaixo, posicionados angularmente conforme mostrado, e que objetivam formar o diagrama de irradiação (curva em magenta). Um critério coerente seria atribuir um valor máximo D_m (usualmente o valor normalizado 1.0, conforme veremos) para o sensor S_m posicionado no *boresight* β , e um valor D_m nulo para os outros 3 sensores S_m .

Importante notar que também deve haver coerência entre o número K de dipolos e o número M de sensores. Por exemplo, se for desejado gerar um diagrama de irradiação com muitos lobos principais e muitos nulos nas direções de sinais interferentes, será necessário posicionar vários sensores S_m atribuindo valor desejado D_m máximo (1.0) nos boresights (θ_m, ϕ_m) que se deseja haver lobos principais e atribuindo valor desejado D_m nulo (0.0) nas direções (θ_m, ϕ_m) que se deseja haver cancelamento do sinal interferente. Sensores adicionais com valor desejado D_m nulo precisarão ser posicionados em torno do eixo do boresight caso se deseje limitar a abertura angular do lobo. Mas todos estes M valores D_m desejados para E_{θ} nas respectivas direções (θ_m, ϕ_m) só serão realizáveis se houver um número K suficiente de dipolos no phased-array. Em geral, o número K de dipolos deve ser maior que o número M de sensores, mas o procedimento ideal é ir aumentando gradativamente K até as condições de campo ditadas pelos M valores desejados D_m serem atingidas após a convergência do algoritmo adaptativo.

De importância crucial para a convergência do algoritmo adaptativo é o valor do seu passo de adaptação η , sendo usualmente $0 < \eta < 1$. Um algoritmo adaptativo usual, cuja baixa complexidade computacional viabiliza sua implementação em hardware e em tempo real, é o *steepest descent* (decida mais íngreme), onde os coeficientes são inicializados arbitrariamente e ajustados dinamicamente, buscando minimizar uma <u>função de custo</u> J. (Ler <u>atentamente</u> as seções "Aprendizado Supervisionado" e "Função de Custo - minimização pela Regra Delta" nos slides 18 a 20 de <u>http://www.fccdecastro.com.br/pdf/AAE_RNA_2019-I.pdf</u>).

Usualmente a função de custo J é representada pela média quadrática do erro *e* entre o valor que se deseja medir para E_{θ} e o valor de E_{θ} efetivamente medido pelos respectivos sensores, caso em que o *beamformer* é denominado de *beamformer* LMS (*Least Mean Square*). Conforme discutido nos slides 18 a 20 de <u>http://www.fccdecastro.com.br/pdf/AAE_RNA_2019-I.pdf</u>, a <u>Regra Delta</u> ajusta adaptativamente o vetor de coeficientes $\underline{w} = [\alpha_0 e^{j\theta_0} \quad \alpha_1 e^{j\theta_1} \quad \cdots \quad \alpha_{K-1} e^{j\theta_{K-1}}]^T$ do *beamformer* com base no gradiente da função de custo J:

$$\underline{w}(n+1) = \underline{w}(n) - \eta \underline{\nabla} \{J(n)\}$$

 Regra Delta

onde η é o passo de adaptação (ou razão de aprendizado) e $\underline{\nabla}\{J(n)\} = \frac{\partial J(n)}{\partial \underline{w}(n)}$ é o gradiente da superfície da função de custo J calculado na iteração n na coordenada $\underline{w} = \begin{bmatrix} w_0 & w_1 & \cdots & w_{K-1} \end{bmatrix}^T$.

Por exemplo, (A) mostra a superfície da função de custo J para um *array* com K = 2 dipolos plotada sobre o domínio $\operatorname{Re}\{\underline{w}\}, \underline{w} = [w_0 \quad w_1]^T$. O domínio $\operatorname{Im}\{\underline{w}\}$ gera uma superfície J semelhante e o processo de minimização de J é idêntico. A cada iteração n o gradiente $\nabla[J(n)]$ é determinado e a Regra Delta move então o vetor $\underline{w}(n)$ para o novo valor $\underline{w}(n+1)$ através de um deslocamento proporcional ao passo η e em uma trajetória que é contrária à direção do gradiente $\nabla[J(n)]$, conforme trajetória em amarelo em (A). Após um número de iterações o processo adaptativo converge e, a cada iteração a partir da convergência, \underline{w} permanecerá se movendo em uma trajetória nas vizinhanças do mínimo de J localizado em $\underline{w} = [\widehat{w_0} \quad \widehat{w_1}]^T$. Note que quanto maior for o passo de adaptação η menor será o número de iterações até as vizinhanças do ponto $[\widehat{w_0} \quad \widehat{w_1}]^T$. No entanto, após a convergência, \underline{w} permanecerá se movendo em uma trajetoria, \underline{w} permanecerá se a convergência, \underline{w} permanecerá se novendo a literações até as vizinhanças do ponto $[\widehat{w_0} \quad \widehat{w_1}]^T$. No entanto, após a convergência, \underline{w} permanecerá se movendo em uma trajetória que será tanto mais afastada do valor ótimo $[\widehat{w_0} \quad \widehat{w_1}]^T$ quanto maior for o valor de η . Daí, portanto, o compromisso na escolha de η para a eficaz convergência do algoritmo LMS.

Cap II.3 –*Beamforming*

Conforme discutimos nos slides 119 a 122, em um *beamformer* LMS para transmissão o algoritmo adaptativo LMS (*Least Mean Square*) ajusta iterativamente um vetor $\underline{w} = [\alpha_0 e^{j\zeta_0} \quad \alpha_1 e^{j\zeta_1} \quad \cdots \quad \alpha_{K-1} e^{j\zeta_{K-1}}]^T$ com os parâmetros de controle $\alpha_k e^{j\zeta_k}$ que determina as correntes $I_k = |I_k|e^{j\angle I_k}$ em cada *k*-ésima respectiva antena do *phased-array*, formando o lobo principal e maximizando o ganho do diagrama de irradiação do *array* na direção desejada para o *boresight*. Para um *array* com *K* dipolos A_k , $k = 0, 1 \cdots K - 1$, o algoritmo adaptativo LMS iterativamente minimiza através da Regra Delta uma função de custo J que representa a média quadrática do conjunto de *M* sinais de erro e_m , $m = 0, 1 \cdots M - 1$. Cada sinal de erro e_m é obtido da diferença entre o valor D_m que se deseja medir para E_{θ} a uma distância $r = r_S$ na direção (θ_m, ϕ_m) e o valor F_m de E_{θ} efetivamente medido pelo respectivo sensor S_m localizado no ponto $p(r_S, \theta_m, \phi_m)$, onde $r_S > 10\lambda$ é medido a partir do centro de fase do *array* (origem do sistema de coordenadas).

Para efeito de simplificar a análise do *beamformer* LMS, dado que no âmbito da simulação do processo adaptativo temos acesso direto aos valores $I_k = |I_k|e^{j \angle I_k}$ das correntes, vamos então analisar a dinâmica do *beamformer* LMS ajustando diretamente as correntes $I_k = |I_k|e^{j \angle I_k}$ sem a necessidade de ajustar em caráter intermediário os coeficientes $\alpha_k e^{j\zeta_k}$, e estes, por sua vez, ajustar $I_k = |I_k|e^{j \angle I_k}$, como acontece no hardware do mundo real. Neste contexto, na análise que segue, o algoritmo LMS ajusta iterativamente o vetor de correntes $\underline{I} = [|I_0|e^{j \angle I_0} \quad |I_1|e^{j \angle I_1} \quad \cdots \quad |I_{K-1}|e^{j \angle I_{K-1}}]^T$ que define as correntes em cada k-ésima respectiva antena do *phased-array*, formando o lobo principal e maximizando o ganho do diagrama de irradiação do *array* na direção desejada para o *boresight*.

O ponto de partida da análise do *beamformer* LMS é a forma fasorial da equação (12) do slide 67, obtida da divisão de (12) por $e^{j\omega t}$:

$$E_{\theta} = \begin{pmatrix} I_0 e^{j\beta(x_0\sin\theta\cos\phi+y_0\sin\theta\sin\phi+z_0\cos\theta)} + \\ I_1 e^{j\beta(x_1\sin\theta\cos\phi+y_1\sin\theta\sin\phi+z_1\cos\theta)} + \\ \vdots \\ I_{K-1} e^{j\beta(x_{K-1}\sin\theta\cos\phi+y_{K-1}\sin\theta\sin\phi+z_{K-1}\cos\theta)} \end{pmatrix} \frac{60}{r} e^{j\left(-\beta r + \frac{\pi}{2}\right)} \left\{ \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta} \right\} \left[\frac{V}{m}\right]$$
(12)

Ainda para efeito de simplificar a análise do *beamformer* LMS, vamos trabalhar com valores normalizados de E_{θ} independentes da distância r, mas mantendo em mente que $r > 10\lambda$. Neste contexto, normalizando (12) pelo fator $\frac{60}{\pi} e^{j\left(-\beta r + \frac{\pi}{2}\right)}$, obtemos $F(\theta, \phi)$ do *phased-array*:

$$F(\theta,\phi) = \begin{pmatrix} I_0 e^{j\beta(x_0\sin\theta\cos\phi+y_0\sin\theta\sin\phi+z_0\cos\theta)} + \\ I_1 e^{j\beta(x_1\sin\theta\cos\phi+y_1\sin\theta\sin\phi+z_1\cos\theta)} + \\ \vdots \\ I_{K-1} e^{j\beta(x_{K-1}\sin\theta\cos\phi+y_{K-1}\sin\theta\sin\phi+z_{K-1}\cos\theta)} \end{pmatrix} \left\{ \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta} \right\} \quad \begin{bmatrix} V \\ m \end{bmatrix}$$
(21)

Conforme discutido nos slides 119 a 121, há M sensores S_m situados sobre uma superfície esférica de raio $r_S > 10\lambda$ em cujo centro encontra-se o phased-array, sendo $m = 0, 1 \cdots M - 1$. O m-ésimo sensor S_m encontra-se na direção (θ_m, ϕ_m) e a intensidade relativa de E_{θ} medido pelo sensor S_m é o valor do diagrama de radiação $F_m = F(\theta_m, \phi_m)$ na direção (θ_m, ϕ_m) do sensor, dado por (21):

$$F_{m} = F(\theta_{m}, \phi_{m}) = \begin{pmatrix} I_{0}e^{j\beta(x_{0}\sin\theta_{m}\cos\phi_{m}+y_{0}\sin\theta_{m}\sin\phi_{m}+z_{0}\cos\theta_{m})} + \\ I_{1}e^{j\beta(x_{1}\sin\theta_{m}\cos\phi_{m}+y_{1}\sin\theta_{m}\sin\phi_{m}+z_{1}\cos\theta_{m})} + \\ \vdots \\ I_{K-1}e^{j\beta(x_{K-1}\sin\theta_{m}\cos\phi_{m}+y_{K-1}\sin\theta_{m}\sin\phi_{m}+z_{K-1}\cos\theta_{m})} \end{pmatrix} \begin{cases} \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta_{m}\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta_{m}} \\ \frac{\sin\theta_{m}}{2} \end{cases} \end{cases} \begin{bmatrix} V \\ m \end{bmatrix}$$
(22)

A distância d(m, k) na direção do *m*-ésimo sensor medida entre o centro do *k*-ésimo dipolo e o plano de fase zero (ver slide 58), plano que é a referência de fase do *phased-array*, é dada por:

$$d(m,k) = x_k \sin \theta_m \cos \phi_m + y_k \sin \theta_m \sin \phi_m + z_k \cos \theta_m$$
(23)

De (22), o fator χ_m que descreve como o conjunto de K dipolos de tamanho L afeta o valor do diagrama de radiação F_m = $F(\theta_m, \phi_m)$ na direção θ_m do m-ésimo sensor S_m é dado por:

$$\chi_m \frac{\cos\left(\frac{L}{\lambda}\pi\cos\theta_m\right) - \cos\left(\frac{\pi L}{\lambda}\right)}{\sin\theta_m} \tag{24}$$

Cap II.3 –*Beamforming*

Substituindo (23) e (24) em (22), e considerando que $\beta = 2\pi/\lambda$,obtemos:

$$\sum_{k=0}^{K-1} I_k e^{j\frac{2\pi}{\lambda}d(m,k)} \chi_m = F_m$$
⁽²⁵⁾

Explicitando o somatório em (25) para os K dipolos e contemplando todos os M sensores, obtemos o sistema de equações:

$$I_{0}e^{j\frac{2\pi}{\lambda}d(0,0)}\chi_{0} + I_{1}e^{j\frac{2\pi}{\lambda}d(0,1)}\chi_{0} + \cdots + I_{K-1}e^{j\frac{2\pi}{\lambda}d(0,K-1)}\chi_{0} = F_{0}$$

$$I_{0}e^{j\frac{2\pi}{\lambda}d(1,0)}\chi_{1} + I_{1}e^{j\frac{2\pi}{\lambda}d(1,1)}\chi_{1} + \cdots + I_{K-1}e^{j\frac{2\pi}{\lambda}d(1,K-1)}\chi_{1} = F_{1}$$

$$\vdots$$

$$I_{0}e^{j\frac{2\pi}{\lambda}d(M-1,0)}\chi_{M-1} + I_{1}e^{j\frac{2\pi}{\lambda}d(M-1,1)}\chi_{M-1} + \cdots + I_{K-1}e^{j\frac{2\pi}{\lambda}d(M-1,K-1)}\chi_{M-1} = F_{M-1}$$
(26)

Colocando (26) em forma matricial temos que $\mathbf{\Phi} \cdot \underline{I} = \underline{F}$:

$$\begin{bmatrix} \chi_{0}e^{j\frac{2\pi}{\lambda}d(0,0)} & \chi_{0}e^{j\frac{2\pi}{\lambda}d(0,1)} & \cdots & \chi_{0}e^{j\frac{2\pi}{\lambda}d(0,K-1)} \\ \chi_{1}e^{j\frac{2\pi}{\lambda}d(1,0)} & \chi_{1}e^{j\frac{2\pi}{\lambda}d(1,1)} & \cdots & \chi_{1}e^{j\frac{2\pi}{\lambda}d(1,K-1)} \\ \vdots & & \vdots \\ \chi_{M-1}e^{j\frac{2\pi}{\lambda}d(M-1,0)} & \chi_{M-1}e^{j\frac{2\pi}{\lambda}d(M-1,1)} & \cdots & \chi_{M-1}e^{j\frac{2\pi}{\lambda}d(M-1,K-1)} \end{bmatrix} \begin{bmatrix} I_{0} \\ I_{1} \\ \vdots \\ I_{K-1} \end{bmatrix} = \begin{bmatrix} F_{0} \\ F_{1} \\ \vdots \\ F_{M-1} \end{bmatrix}$$
(27)

Note que se o números K de dipolos for igual ao número M de sensores (situação pouco provável na prática), podemos obter as correntes \underline{I} a partir dos valores desejados D_m que se deseja que os sensores S_m meçam para E_{θ} nas direções (θ_m, ϕ_m) através de

$$\underline{I} = \mathbf{\Phi}^{-1} \cdot \underline{F} = \mathbf{\Phi}^{-1} \cdot \begin{bmatrix} D_0 \\ D_1 \\ \vdots \\ D_{M-1} \end{bmatrix}$$

Cada linha da matriz $\mathbf{\Phi}$ na equação $\mathbf{\Phi} \cdot \underline{I} = \underline{F}$ é um vetor $\underline{\Phi}_m$ denominado *steering vector* cuja forma é

$$\underline{\Phi}_{m} = \begin{bmatrix} \Phi_{0} & \Phi_{1} & \cdots & \Phi_{K-1} \end{bmatrix} = \chi_{m} \begin{bmatrix} e^{j\frac{2\pi}{\lambda}d(m,0)} & e^{j\frac{2\pi}{\lambda}d(m,1)} & \cdots & e^{j\frac{2\pi}{\lambda}d(m,K-1)} \end{bmatrix}$$
(28)

De modo que a equação (27) pode ser reescrita como

$$\mathbf{\Phi} \cdot \underline{I} = \begin{bmatrix} \underline{\Phi}_0 \\ \underline{\Phi}_1 \\ \vdots \\ \underline{\Phi}_{M-1} \end{bmatrix} \begin{bmatrix} I_0 \\ I_1 \\ \vdots \\ I_{K-1} \end{bmatrix} = \begin{bmatrix} F_0 \\ F_1 \\ \vdots \\ F_{M-1} \end{bmatrix} = \underline{F}$$
(29)

Note de (28) e (29) que cada *m*-ésimo steering vector $\underline{\Phi}_m$ da matriz $\mathbf{\Phi}$ determina a amplitude e fase com que cada *k*-ésima onda EM respectivamente gerada pela corrente I_k no *k*-ésimo dipolo do array se propaga e incide no *m*-ésimo sensor S_m juntamente com as demais K - 1 ondas EM geradas pelos demais respectivos dipolos, interferindo-se mutuamente umas com as outras e gerando o valor normalizado de campo elétrico resultante F_m , com $k = 0, 1 \cdots K - 1$, sendo K o número de dipolos no array:

$$\underline{\Phi}_{m} \begin{bmatrix} I_{0} \\ I_{1} \\ \vdots \\ I_{K-1} \end{bmatrix} = \begin{bmatrix} \Phi_{0} & \Phi_{1} & \cdots & \Phi_{K-1} \end{bmatrix} \begin{bmatrix} I_{0} \\ I_{1} \\ \vdots \\ I_{K-1} \end{bmatrix} = \chi_{m} \begin{bmatrix} e^{j\frac{2\pi}{\lambda}d(m,0)} & e^{j\frac{2\pi}{\lambda}d(m,1)} & \cdots & e^{j\frac{2\pi}{\lambda}d(m,K-1)} \end{bmatrix} \begin{bmatrix} I_{0} \\ I_{1} \\ \vdots \\ I_{K-1} \end{bmatrix} = I_{0}\chi_{m} e^{j\frac{2\pi}{\lambda}d(m,0)} + I_{1}\chi_{m} e^{j\frac{2\pi}{\lambda}d(m,1)} + \cdots + I_{K-1}\chi_{m} e^{j\frac{2\pi}{\lambda}d(m,K-1)} = F_{m}$$
(30)

$$\underline{\Phi}_{m} \begin{bmatrix} I_{0} \\ I_{1} \\ \vdots \\ I_{K-1} \end{bmatrix} = \begin{bmatrix} \Phi_{0} & \Phi_{1} & \cdots & \Phi_{K-1} \end{bmatrix} \begin{bmatrix} I_{0} \\ I_{1} \\ \vdots \\ I_{K-1} \end{bmatrix} = \chi_{m} \begin{bmatrix} e^{j\frac{2\pi}{\lambda}d(m,0)} & e^{j\frac{2\pi}{\lambda}d(m,1)} & \cdots & e^{j\frac{2\pi}{\lambda}d(m,K-1)} \end{bmatrix} \begin{bmatrix} I_{0} \\ I_{1} \\ \vdots \\ I_{K-1} \end{bmatrix} = I_{0} \chi_{m} e^{j\frac{2\pi}{\lambda}d(m,0)} + I_{1} \chi_{m} e^{j\frac{2\pi}{\lambda}d(m,1)} + \cdots + I_{K-1} \chi_{m} e^{j\frac{2\pi}{\lambda}d(m,K-1)} = F_{m}$$
(30)

O grafo de fluxo de sinal que representa a equação (30) é conforme (A) abaixo: Cada *m*-ésimo steering vector $\underline{\Phi}_m$ da matriz Φ determina como as *K* ondas EM geradas pelas correntes nos respectivos dipolos do array se propagam e incidem no *m*-ésimo sensor S_m , interferindo-se mutuamente umas com as outras (efeito que é representado pelo somador Σ) e gerando o valor normalizado de campo elétrico resultante F_m .

O beamformer LMS ajusta iterativamente o vetor de correntes $\underline{I} = [|I_0|e^{j \ge l_0} |I_1|e^{j \ge l_1} \cdots |I_{K-1}|e^{j \ge l_{K-1}}]^T$ através da Regra Delta objetivando minimizar a média quadrática do conjunto de M sinais de erro e_m , $m = 0, 1 \cdots M - 1$. Especificamente, para cada m-ésimo steering vector $\underline{\Phi}_m$ da matriz $\mathbf{\Phi}$ é determinado o valor F_m medido pelo respectivo sensor S_m localizado na direção (θ_m, ϕ_m) , e o erro $e_m = D_m - F_m$ é usado para ajustar o vetor \underline{I} através da Regra Delta, conforme mostrado em (A) abaixo. A cada iteração *iter*, o índice m é variado de 0 a M - 1 e a média quadrática e^2_{medio} do conjunto de M sinais de erro e_m é determinada ao final da iteração. Se $e^2_{medio} < \epsilon$, sendo ϵ o valor máximo admissível para o erro médio, então é considerado que o processo convergiu. Caso contrário, $iter \leftarrow iter + 1$ e o processo continua até a condição $e^2_{medio} < \epsilon$ ser obedecida.

10 F_m Σ Φ_m I_{K-1} Delta e_m (A) + $\underline{I}[m+1] = \underline{I}[m] - \eta \underline{\nabla} \{e^2[m]\}$ Regra D_m Delta

Como se observa em (A), a Regra Delta necessita do cálculo prévio do gradiente da função de custo, dado por

$$\underline{\nabla}\{e^2[m]\} = \frac{\partial e^2[m]}{\partial \underline{I}[m]}$$

A determinação de $\nabla \{e^2(m)\}$ para o *beamformer* LMS segue o desenvolvimento algébrico mesmo na secão 6.2.1 "Funcionamento do Equalizador LMS – DD" na pag 7 de http://www.fccdecastro.com.br/pdf/cd6.pdf, com a diferença de que lá os coeficientes ponderam uma combinação linear de sinais separados no tempo e aqui os coeficientes ponderam a combinação linear de sinais separados no espaço. O resultado do desenvolvimento algébrico para determinação de $\nabla \{e^2(m)\}$ e a aplicação do mesmo na Regra Delta para o beamformer LMS resumido procedimento encontra-se no computacional mostrado na tabela do próximo slide.

onde η é o passo de adaptação.

Etapa	Procedimento – <i>beamformer</i> LMS
1	Inicializar o vetor de correntes <u>I</u> com o valor $0 + j0$ para todos os K componentes, onde $j = \sqrt{-1}$.
2	Determinar o conjunto de steering vectors $\underline{\Phi}_m$ para $m = 0, 1, \dots, M - 1$ através da equação (28) do slide 126, sendo M o número de sensores.
3	Zerar indexador de sensor: $m = 0$
4	Determinar através da equação (30) do slide 126 o valor F_m medido pelo respectivo sensor S_m localizado na direção (θ_m , ϕ_m):
	$F_m = \underline{\Phi}_m \cdot \underline{I}$
5	Calcular o erro e_m na direção (θ_m , φ_m) do m -ésimo sensor, a partir do valor desejado D_m para F_m nesta direção:
	$e_m = D_m - F_m$
6	Atualizar o vetor de correntes <u>I</u> :
	$\underline{I}_{m+1} = \underline{I}_m + \eta \ e_m \ \underline{\Phi}_m^*$
	onde η é o passo de adaptação do algoritmo (um escalar usualmente entre 0.0001 e 1.0). $(\cdot)^*$ é o operador que retorna o valor complexo conjugado do argumento (\cdot) .
7	Incrementar indexador de sensor: $m = m + 1$
8	Se $m = M$ então ir para a etapa 9, caso contrário ir para a etapa 4.
9	Critério de parada: Determinar a média quadrática e^2_{medio} do conjunto de M sinais de erro e_m . Se $e^2_{medio} < \epsilon$, sendo ϵ o valor máximo admissível para o erro médio, então encerrar o processo, caso contrário ir para a etapa 3.

O procedimento acima encontra-se descrito no *script* do software MathCad utilizado na solução do exemplo "ULA de K = 4 dipolos com correntes determinadas por beamforming" do slide 106, o qual está disponível em <u>http://www.fccdecastro.com.br/ZIP/BeamformerULA4Dip.zip</u>.

Exemplo 9: Consideremos um sistema de EW para comunicações táticas multiusuário em cujas *base stations* é adotado um *phased-array* constituído de um painel de 4 dipolos de meia onda distantes $\lambda/4$ de um plano refletor α , conforme mostra (A) abaixo. Através do algoritmo MUSIC (<u>https://en.wikipedia.org/wiki/MUSIC_(algorithm)</u>, que estudaremos em capítulo posterior) a *base station* identificou dois sinais incidindo no *phased-array* – o sinal de um usuário do sistema de comunicações tático e um sinal desconhecido, cujos DOAs identificados pelo MUSIC são conforme tabela em (B).

(B)		
Sinal:	DOA θ :	DOA ϕ :
Usuário	108°	-30°
Desconhecido	120°	15°

(A)

 $\lambda/2$

 $p(r,\theta,\phi)$

 E_{θ}

 $\lambda/4$

α

<u>۱</u>ח)

λ

x

Conforme discutido no Cap I.2 e Cap I.3, em um teatro de EW é crucial operar em modo *stealth*, i.e., operar sob o paradigma "ver sem ser visto". Para tanto, é necessário que os sinais irradiados tenham pouca probabilidade de serem interceptados pelos sistemas de EW do inimigo (sinal LPI – *Low Probability of Intercept*). Neste contexto, o sistema de EW decide que o sinal desconhecido é um sinal irradiado por uma possível ameaça (*threat signal*) e envia para o controlador do *phased-array* os DOAs da tabela em (B) para que o *phased-array* da *base station* irradie a máxima intensidade de sinal no DOA do sinal do usuário e a mínima intensidade de sinal no DOA do sinal o conhecido de modo a tornar a *base station* "invisível" ao inimigo.

Pede-se: Sabendo que o *beamformer* do controlador do *phased-array* é um *beamformer* LMS (a) Determine as amplitudes e fases relativas das correntes de radiação que respectivamente excitam os dipolos do *phased-array* de modo que o *phased-array* irradie a máxima intensidade de sinal no DOA do sinal do usuário e a mínima intensidade de sinal no DOA do sinal desconhecido. (b) Plote o diagrama de irradiação $F(\theta, \phi)$ e verifique se as exigências para o contorno do campo irradiado são obedecidas.

O script do software MathCad utilizado na solução deste exemplo está disponível em http://www.fccdecastro.com.br/ZIP/E9S130.zip.

Solução: (a) Primeiramente o *phased-array* mostrado em (A) no slide anterior precisa ser convertido em um *phased-array* sem o refletor α mas com dipolos imagens incluídos de modo a assegurar a condição de campo elétrico tangencial nulo nos pontos do espaço \mathbb{R}^3 onde estava situado o refletor α , conforme mostrado em (A) abaixo. Daí, aplicando o procedimento para o *beamformer* LMS do slide 129, cujo correspondente *script* do software MathCad encontra-se disponível em <u>http://www.fccdecastro.com.br/ZIP/E9S130.zip</u>, obtemos o seguinte conjunto de correntes que alimentam os dipolos do *phased-array*:

Note que as correntes dos dipolos imagens tem mesma magnitude que as correntes nos respectivos dipolos reais mas estão defasadas entre si de 180°, como era de se esperar para que seja atendida a condição de campo elétrico tangencial nulo nos pontos do espaço \mathbb{R}^3 onde está situado o refletor α .

(b) Plotando o diagrama de irradiação $F(\theta, \phi)$ resultante das correntes obtidas em (A), temos:

Comunicações Estratégicas

Cap II.3 –Beamforming

134 Prof Fernando DeCastro

Exemplo 10: Consideremos um sistema de EW para comunicações táticas multiusuário em cujas *base stations* é adotado o *phased-array* do tipo *Uniform Circular Array* (UCA) mostrado em (B), operando em f_o = 850MHz e constituído por 6 dipolos cilíndricos de tamanho $I = 0.75\lambda$ e de raio *a*=5mm conforme (A), separados entre si de *s*=0.25 λ , sendo λ o comprimento de onda em f_o. O plano *xy* é paralelo ao plano do solo de modo que os dipolos são verticalmente polarizados.

Através do algoritmo ESPRIT (*Estimation of Signal Parameters via Rotational Invariant Techniques* <u>https://en.wikipedia.org/wiki/Estimation_of_signal_parameters_via_rotational_invariance_techniques</u>, a ser estudado em capítulo posterior) a *base station* detectou o sinal de um usuário incidindo no *phased-array* cujo DOA identificado pelo ESPRIT é conforme tabela em (A) abaixo.

(A) Sinal:	DOA θ :	DOA ϕ :
Usuário	90°	120°

Conforme discutido no Cap I.2 e Cap I.3, em um teatro de EW é crucial operar em modo *stealth*, i.e., operar sob o paradigma "ver sem ser visto". Para tanto, é necessário que os sinais irradiados tenham pouca probabilidade de serem interceptados pelos sistemas de EW do inimigo (sinal LPI – *Low Probability of Intercept*). Neste contexto, o sistema de EW envia para o controlador do *phased-array* o DOA do usuário na tabela em (A) para que o *phased-array* da *base station* irradie a máxima intensidade de sinal no DOA do sinal do usuário e a mínima intensidade em todas as demais direções azimutais, minimizando assim a probabilidade de o sinal da *base station* ser detectado pelo inimigo.

Pede-se: Sabendo que o *beamformer* do controlador do *phased-array* é um *beamformer* LMS (a) Determine as amplitudes e fases relativas das correntes de radiação que respectivamente excitam os dipolos do *phased-array* de modo que o *phased-array* irradie a máxima intensidade de sinal no DOA do sinal do usuário e a mínima intensidade de sinal nas demais direções azimutais. Normalize o conjunto de correntes de radiação resultantes de modo que a maior corrente tenha amplitude unitária. (b) Determine o fasor das tensões que o controlador do *phased-array* alimenta os terminais dos dipolos do *array*. (c) Determine a potência útil em [W] que alimenta cada dipolo do *array*. (d) Plote o diagrama de irradiação $F(\theta, \phi)$ para $\theta = \{30^\circ, 60^\circ, 90^\circ, 120^\circ, 150^\circ\}$ e verifique se as exigências para o contorno do campo irradiado são obedecidas. (e) Determine o HPBW no plano do azimute do lobo principal de $F(\theta, \phi)$ (i.e.,na direção do *boresight*).

O script do software MathCad utilizado na solução deste exemplo está disponível em http://www.fccdecastro.com.br/ZIP/E10S135.zip .

Solução:

 $f := 850 \cdot MHz \rightarrow$ freqüência de operação $\lambda := \frac{c}{\epsilon}$ $\lambda = 0.353 \, \text{m}$ \rightarrow comprimento de onda da onda eletromagnética $s := 0.25 \cdot \lambda \longrightarrow$ espaçamento entre dipolos $L := 0.75 \cdot \lambda \rightarrow \text{tamanho dos dipolos}$ $\mathbb{R}:= 5 \cdot \mathrm{mm} \longrightarrow \mathrm{raio} \mathrm{do} \mathrm{dipolo} \mathrm{cilíndrico}$ $\mathbf{K} := \begin{pmatrix} \mathbf{s} & \mathbf{0} & \mathbf{0} \\ \mathbf{s} \cdot \cos(60^\circ) & \mathbf{s} \cdot \sin(60^\circ) & \mathbf{0} \\ -\mathbf{s} \cdot \cos(60^\circ) & \mathbf{s} \cdot \sin(60^\circ) & \mathbf{0} \\ -\mathbf{s} & \mathbf{0} & \mathbf{0} \\ -\mathbf{s} \cdot \cos(60^\circ) & -\mathbf{s} \cdot \sin(60^\circ) & \mathbf{0} \\ \mathbf{s} \cdot \cos(60^\circ) & -\mathbf{s} \cdot \sin(60^\circ) & \mathbf{0} \end{pmatrix} = \begin{pmatrix} \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{8} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{4} & -\mathbf{0} \cdot \mathbf{0} \cdot \mathbf{6} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{1} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} \\ \mathbf{0} \cdot \mathbf{1} & \mathbf{0} & \mathbf{0}$

 $K := rows(C) = 6 \rightarrow número de dipolos do array$

 $\theta b := 90^{\circ} \longrightarrow DOA\theta$ do sinal usuário.

 $\phi b := 120^{\circ} \rightarrow DOA\phi$ do sinal usuário

 \rightarrow coordenadas dos centros dos dipolos do array

O valor desejado D_m para o campo F_m medido pelo sensor S_m na direção (θ_m, ϕ_m) é dado por cada llinha (θ_m, ϕ_m, D_m) da matriz S, matriz que é especificada linha a linha através da função stack() conforme abaixo:

- $\eta := 0.01 \longrightarrow passo de adaptação do algoritmo LMS$
- NumIter := 500 \rightarrow número de iterações do algoritmo LMS
- $M := 1000 \rightarrow$ número de pontos no gráfico polar dos contornos de F(θ, ϕ).

 $M := rows(S) = 12 \rightarrow número de sensores de campo S$

(a) Matriz impedância entre os dipolos do array:

$$\mathbf{a} \coloneqq \mathbf{0} \dots \mathbf{K} - 1 \qquad \mathbf{b} \coloneqq \mathbf{0} \dots \mathbf{K} - 1 \qquad \mathbf{D}_{\mathbf{a}, \mathbf{b}} \coloneqq \sqrt{\left[\left(\mathbf{C}^{\langle \mathbf{0} \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle \mathbf{0} \rangle}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{\langle \mathbf{1} \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle \mathbf{1} \rangle}\right)_{\mathbf{b}}\right]^{2} + \left[\left(\mathbf{C}^{\langle \mathbf{2} \rangle}\right)_{\mathbf{a}} - \left(\mathbf{C}^{\langle \mathbf{2} \rangle}\right)_{\mathbf{b}}\right]^{2}} \\ Z_{\mathbf{a}, \mathbf{b}} \coloneqq \mathbf{if} \left(\mathbf{a} = \mathbf{b}, \mathbf{Zin}_{\mathbf{S}} \mathbf{Schelkunoff} \left(\frac{\mathbf{R}}{\mathbf{mm}}, \frac{\lambda}{\mathbf{m}}, \frac{\mathbf{L}}{\mathbf{m}}\right), \mathbf{ZMutual}_{\mathbf{S}} \mathbf{Schelkunoff} \left(\frac{\mathbf{L}}{\mathbf{m}}, \frac{\mathbf{R}}{\mathbf{mm}}, \frac{\mathbf{R}}{\mathbf{mm}}, \frac{\mathbf{D}_{\mathbf{a}, \mathbf{b}}}{\mathbf{m}}, \frac{\lambda}{\mathbf{m}}\right)\right)$$

 $Z = \begin{pmatrix} 488.325 + 11.858i & -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & 488.325 + 11.858i & -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i \\ -393.374 + 146.573i & -429.006 - 368.515i & 488.325 + 11.858i & -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i \\ -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i & 488.325 + 11.858i & -429.006 - 368.515i & -393.374 + 146.573i \\ -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i & 488.325 + 11.858i & -429.006 - 368.515i & -393.374 + 146.573i \\ -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i & 488.325 + 11.858i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i & -281.613 + 261.74i & -393.374 + 146.573i & -429.006 - 368.515i \\ -429.006 - 368.515i & -393.374 + 146.573i &$

Determinando a matriz Φ cujas M = 12 linhas correspondem aos respectivos *steering vectors* dados pela equação (28) do slide 126: $\Phi_{M} := \Phi_{Matrix}(\lambda, L, C, S)$ $\cdot \Omega$

Executando o procedimento na tabela do slide 129:

$$\binom{MSE}{Io} := LMS_Beamformer(\Phi, S, \eta, NumIter)$$

Correntes resultantes normalizadas para valor máximo unitário:

$$Io := \frac{Io \cdot amp}{max(|Io|)} \quad |Io| = \begin{pmatrix} 0.99 \\ 1 \\ 0.703 \\ 0.99 \\ 1 \\ 0.703 \end{pmatrix} A \quad arg(Io) = \begin{pmatrix} 71.093 \\ -69.225 \\ 117.112 \\ -71.093 \\ 69.225 \\ -117.112 \end{pmatrix}.$$

Evolução do erro médio quadrático MSE (Mean Square Error) ao longo das iterações do algoritmo LMS:

(b) Convertendo as correntes de radiação Io_k dos dipolos do *array* para as correntes nos terminais Ii_k dos respectivos dipolos através da equação (33) do slide 16, obtemos: k := 0, 1 .. K - 1 $\begin{pmatrix} 0.7 \\ 0.707 \\ 0.407 \end{pmatrix}$ $\begin{pmatrix} 71.093 \\ -69.225 \\ 117,112 \end{pmatrix}$

$$Ii_{k} := Io_{k} \sin\left(\frac{\pi \cdot L}{\lambda}\right) \longrightarrow \qquad \overrightarrow{|Ii|} = \begin{pmatrix} 0.497\\ 0.7\\ 0.707\\ 0.497 \end{pmatrix} A \qquad \arg(Ii) = \begin{pmatrix} 117.112\\ -71.093\\ 69.225\\ -117.112 \end{pmatrix}.$$

Tensões que o controlador do phased-array deve aplicar a cada dipolo:

$$\mathcal{X} := Z \cdot Ii \qquad \overrightarrow{|V|} = \begin{pmatrix} 713.015 \\ 661.484 \\ 1.034 \times 10^{3} \\ 653.674 \\ 710.353 \\ 571.067 \end{pmatrix} \cdot \text{volt} \qquad \overrightarrow{arg(V)} = \begin{pmatrix} 121.832 \\ -46.501 \\ 167.731 \\ -48.885 \\ 119.715 \\ -76.69 \end{pmatrix} \cdot ^{\circ}$$

(C) Potência útil entregue pelo controlador do phased-array a cada dipolo:

$$P_{k} := \frac{1}{2} \cdot \operatorname{Re}\left(V_{k} \cdot \overline{\operatorname{Ii}_{k}}\right) \qquad P = \begin{pmatrix} 157.911 \\ 215.715 \\ 163.072 \\ 211.783 \\ 159.784 \\ 108.034 \end{pmatrix} \cdot W$$

(d)&(e) Formação dos contornos no gráfico polar de $F(\theta,\phi)$ parametrizados por θ :

$$\theta := \begin{pmatrix} 30^{\circ} \\ 60^{\circ} \\ 90^{\circ} \\ 120^{\circ} \\ 150^{\circ} \end{pmatrix} \quad \text{cc} := 0 \dots \text{length}(\theta) - 1 \qquad n := 0 \dots N - 1 \qquad \varphi_{n} := 2 \cdot \pi \cdot \frac{n}{N}$$
$$F_{\text{M}} := \text{DipoleArray}_{3D}(\lambda, L, C, \text{Io}, \theta_{\text{cc}}, N) \qquad F := \frac{F}{\max(F)}$$

Determinando o HPBW p/ o contorno de $F(\theta, \phi)$ de índice ctr:

ctr := 2 \rightarrow seleciona contorno para θ dado por $\theta_{ctr} = 90.^{\circ}$

 $\rho := 4.0$ \rightarrow ajustar manualmente o fator de tolerância ρ para match() retornar 2 valores. Quanto maior o fator de tolerância ρ mais valores match() retorna.

$$TOLsaved := TOL = 1 \times 10^{-3}$$

$$TOLsaved := TOL = 1 \times 10^{-3}$$

$$TOLsaved := TOLsaved = 1 \times 10^{-3}$$

$$\begin{aligned} \text{Hpn}_1 \\ \text{hpn}_2 \end{aligned} := match \left(\frac{\max(F^{(ctr)})}{\sqrt{2}}, F^{(ctr)} \right) = \begin{pmatrix} 269 \\ 400 \end{pmatrix}$$

$$HPBW := if \left(\left| \phi_{\text{hpn}_1} - \phi_{\text{hpn}_2} \right| > 180^\circ, 360^\circ - \left| \phi_{\text{hpn}_1} - \phi_{\text{hpn}_2} \right|, \left| \phi_{\text{hpn}_1} - \phi_{\text{hpn}_2} \right| \right) \rightarrow HPBW = 47.16^{\circ}$$

$$hpbw(n, ctr) := if \left[\left(\left| \phi_n - \phi_{\text{hpn}_1} \right| < \frac{\pi}{N} \right) + \left(\left| \phi_n - \phi_{\text{hpn}_2} \right| < \frac{\pi}{N} \right), \max(F^{(ctr)}), 0 \right]$$

Homework 1

Refazer o Exemplo 1 do slide 20 para $L_0 = \lambda/10$.
Refazer o Exemplo 2 do slide 25 para $L_0 = \lambda/10$.

Refazer o Exemplo 3 do slide 36 para r = 4 [Km]

Refazer o Exemplo 4 do slide 37 para L = 3.5 [m].

Refazer o Exemplo 5 do slide 45 para a situação em que o dipolo RX está girado de um ângulo $\zeta = 30^{\circ}$ em torno do eixo x'. Ainda, considere que o comprimento do dipolo foi alterado para L= 81 [m].

Refazer o Exemplo 6 do slide 69 para $L_a = 120.606$ [cm].

Refazer o Exemplo 7 do slide 80 para P = 100 [W].

Refazer o Exemplo 8 do slide 91 para a situação em que o array RX está girado de um ângulo $\zeta = 30^{\circ}$ em torno do eixo x'. Ainda, considere que a potência fornecida ao array TX foi alterada para P = 125 [W].

Refazer o Exemplo 9 do slide 130 para:

Sinal:	DOA θ :	DOA ϕ :
Usuário	108°	30°
Desconhecido	120°	—15°

Refazer o Exemplo 10 do slide 135 para:

Sinal:	DOA θ :	DOA ϕ :
Usuário	90°	205°

Apêndice I – Impedância de entrada de um dipolo de comprimento "Length" [m], raio do fio "Radius" [mm] e que opera em uma frequência cujo comprimento de onda é λ [m] – *script* MathCad:

Zin_Schelkunoff (Radius, λ, Length) :=	EULER $\leftarrow 0.5772156649$ $\beta \leftarrow \frac{2 \cdot \pi}{\lambda}$ Length $\leftarrow 0.5$ ·Length Radius $\leftarrow 1 \cdot 10^{-3}$ ·Radius $\beta L \leftarrow \beta$ ·Length $_2\beta L \leftarrow 2 \cdot \beta L$ $_4\beta L \leftarrow 4 \cdot \beta L$ LOverR $\leftarrow \frac{\text{Length}}{\text{Radius}}$ LnLOR $\leftarrow \ln(2 \cdot \text{LOverR})$ Ln2 $\beta L \leftarrow \ln(2\beta L)$ S $\beta L \leftarrow \sin(\beta L)$ S $\beta L \leftarrow \sin(\beta L)$ S $2\beta L \leftarrow \sin(2\beta L)$ C $2\beta L \leftarrow \cos(2\beta L)$ S $2\beta L \leftarrow \cos(2\beta L)$	$\begin{split} \text{Tmp} &\leftarrow \text{SiCi}(_2\beta\text{L}) \\ \text{Si}2\beta\text{L} &\leftarrow \text{Re}(\text{Tmp}) \\ \text{Ci}2\beta\text{L} &\leftarrow \text{Im}(\text{Tmp}) \\ \text{Tmp} &\leftarrow \text{SiCi}(_4\beta\text{L}) \\ \text{Si}4\beta\text{L} &\leftarrow \text{Re}(\text{Tmp}) \\ \text{Ci}4\beta\text{L} &\leftarrow \text{Im}(\text{Tmp}) \\ \text{R1} &\leftarrow \text{EULER} + \text{Ln}2\beta\text{L} - \text{Ci}2\beta\text{L} \\ \text{R2} &\leftarrow 0.5 \cdot \text{S2}\beta\text{L} \cdot (\text{Si4}\beta\text{L} - 2 \cdot \text{Si}2\beta\text{L}) \\ \text{R3} &\leftarrow 0.5 \cdot \text{C2}\beta\text{L} \cdot (\text{EULER} + \text{Ln}\beta\text{L} + \text{Ci}4\beta\text{L} - 2 \cdot \text{Ci}2\beta\text{L}) \\ \text{RA} &\leftarrow 60 \cdot (\text{R1} + \text{R2} + \text{R3}) \\ \text{X1} &\leftarrow \text{Si}2\beta\text{L} \\ \text{X2} &\leftarrow 0.5 \cdot \text{S2}\beta\text{L} \cdot (\text{EULER} + \text{Ln}\beta\text{L} - \text{Ci}4\beta\text{L}) \\ \text{X3} &\leftarrow 0.5 \cdot \text{C2}\beta\text{L} \cdot \text{Si}4\beta\text{L} \\ \text{XA} &\leftarrow 60 \cdot (\text{X1} - \text{X2} - \text{X3}) \\ \text{M} &\leftarrow 60 \cdot (\text{Ln}2\beta\text{L} - \text{Ci}2\beta\text{L} + \text{EULER} - 1 + \text{C2}\beta\text{L}) \\ \text{N} &\leftarrow 60 \cdot (\text{Si}2\beta\text{L} - \text{S2}\beta\text{L}) \\ \text{ZOM} &\leftarrow 120 \cdot (\text{Ln}\text{LOR} - 1) \\ \text{Zin} &\leftarrow \text{RA} \cdot \text{S}\beta\text{L} + j \cdot [(\text{XA} - \text{N}) \cdot \text{S}\beta\text{L} - (\text{ZOM} - \text{M}) \cdot \text{C}\beta\text{L}] \\ \text{Zid} &\leftarrow (\text{ZOM} + \text{M}) \cdot \text{S}\beta\text{L} + (\text{XA} + \text{N}) \cdot \text{C}\beta\text{L} - j \cdot (\text{RA} \cdot \text{C}\beta\text{L}) \\ \text{return} \text{ZOM} \cdot \frac{\text{Zin}}{\text{Zid}} \cdot \Omega \end{split}$
--	---	--

$$\begin{aligned} \text{ZMutual_Schelkunoff}(\text{Length1},\text{Length2},\text{Radius1},\text{Radius2},\text{Spacing},\lambda) \coloneqq & \text{EULER} \leftarrow 0.5772156649\\ \beta \leftarrow \frac{2 \cdot \pi}{\lambda}\\ \text{Length1} \leftarrow 0.5 \cdot \text{Length1}\\ \text{Length2} \leftarrow 0.5 \cdot \text{Length2}\\ \text{Radius1} \leftarrow 1 \cdot 10^{-3} \cdot \text{Radius1}\\ \text{Radius2} \leftarrow 1 \cdot 10^{-3} \cdot \text{Radius2}\\ \beta \text{L1} \leftarrow \beta \cdot \text{Length1}\\ \beta \text{L2} \leftarrow \beta \cdot \text{Length2}\\ 2\beta \text{L1} \leftarrow 2 \cdot \beta \text{L1}\\ 2\beta \text{L2} \leftarrow 2 \cdot \beta \text{L2}\\ 4\beta \text{L1} \leftarrow 4 \cdot \beta \text{L1}\\ 4\beta \text{L2} \leftarrow 4 \cdot \beta \text{L2}\\ \text{LOverR1} \leftarrow \frac{\text{Length1}}{\text{Radius1}}\\ \text{LOverR2} \leftarrow \frac{\text{Length2}}{\text{Radius1}}\end{aligned}$$

 $LnLOR1 \leftarrow ln(2 \cdot LOverR1)$

$LnLOR2 \leftarrow ln(2 \cdot LOverR2)$	$Si4\beta L1 \leftarrow Re(Tmp)$	
$Ln2\beta L1 \leftarrow ln(2\beta L1)$	$Ci4\beta L1 \leftarrow Im(Tmp)$	
$Ln2\beta L2 \leftarrow ln(_2\beta L2)$	$Tmp \leftarrow SiCi(4\beta L2)$	
$Ln\beta L1 \leftarrow ln(\beta L1)$	$Si4\beta L2 \leftarrow Re(Tmp)$	
$Ln\beta L2 \leftarrow ln(\beta L2)$	$Ci4\beta L2 \leftarrow Im(Tmp)$	
$S\beta L1 \leftarrow sin(\beta L1)$	$R11 \leftarrow EULER + Ln2\beta L1 - Ci2\beta L1$	
$S\beta L2 \leftarrow sin(\beta L2)$	$R12 \leftarrow EULER + Ln2\beta L2 - Ci2\beta L2$	
$C\beta L1 \leftarrow \cos(\beta L1)$	$R21 \leftarrow 0.5 \cdot S2\beta L1 \cdot (Si4\beta L1 - 2 \cdot Si2\beta L1)$	
$C\beta L2 \leftarrow \cos(\beta L2)$	$R22 \leftarrow 0.5 \cdot S2\beta L2 \cdot (Si4\beta L2 - 2 \cdot Si2\beta L2)$	
$S2\beta L1 \leftarrow sin(2\beta L1)$	$R31 \leftarrow 0.5 \cdot C2\beta L1 \cdot (EULER + Ln\beta L1 + Ci4\beta L1 - 2 \cdot Ci2\beta L1)$	
$S2\beta L2 \leftarrow sin(2\beta L2)$	$R32 \leftarrow 0.5 \cdot C2\beta L2 \cdot (EULER + Ln\beta L2 + Ci4\beta L2 - 2 \cdot Ci2\beta L2)$	
$C2\beta L1 \leftarrow cos(2\beta L1)$	$RA1 \leftarrow 60 \cdot (R11 + R21 + R31)$	
$C2\beta L2 \leftarrow cos(2\beta L2)$	$RA2 \leftarrow 60 \cdot (R12 + R22 + R32)$	
$Tmp \leftarrow SiCi(2\beta L1)$	$X11 \leftarrow Si2\beta L1$	
$Si2\beta L1 \leftarrow Re(Tmp)$	$X12 \leftarrow Si2\beta L2$	
$Ci2\beta L1 \leftarrow Im(Tmp)$	$X21 \leftarrow 0.5 \cdot S2\beta L1 \cdot (EULER + Ln\beta L1 - Ci4\beta L1)$	
$Tmp \leftarrow SiCi(2\beta L2)$	$X22 \leftarrow 0.5 \cdot S2\beta L2 \cdot (EULER + Ln\beta L2 - Ci4\beta L2)$	
$Si2\beta L2 \leftarrow Re(Tmp)$	$X31 \leftarrow 0.5 \cdot C2\beta L1 \cdot Si4\beta L1$	
$Ci2\beta L2 \leftarrow Im(Tmp)$	$X32 \leftarrow 0.5 \cdot C2\beta L2 \cdot Si4\beta L2$	
$Tmp \leftarrow SiCi(_4\beta L1)$	$XA1 \leftarrow 60 \cdot (X11 - X21 - X31)$	

Comunicações Estratégicas

$XA2 \leftarrow 60 \cdot (X12 - X22 - X32)$	$A4 \leftarrow B1 - BL1 - BL2$	$C5 \leftarrow Im(Tmp)$
$ZA1 \leftarrow RA1 + j \cdot XA1$	$A5 \leftarrow R1 + \beta L1 + \beta L2$	$Tmp \leftarrow SiCi(A6)$
$ZA2 \leftarrow RA2 + j \cdot XA2$	$A6 \leftarrow R0I = BI1$	$S6 \leftarrow Re(Tmp)$
$M1 \leftarrow 60 \cdot (Ln2\beta L1 - Ci2\beta L1 + EULER - 1 + C2\beta L1)$		$C6 \leftarrow Im(Tmp)$
$M2 \leftarrow 60 \cdot (Ln2\beta L2 - Ci2\beta L2 + EULER - 1 + C2\beta L2)$	A/ ← ROL + BLI	Tmp ← SiCi(A7)
$N1 \leftarrow 60 \cdot (Si2\beta L1 - S2\beta L1)$	$A8 \leftarrow R2 - \beta L2 + \beta L1$	
$N2 \leftarrow 60 \cdot (Si2\beta L2 - S2\beta L2)$	$A9 \leftarrow R2 + \beta L2 - \beta L1$	$S' \leftarrow Re(Imp)$
$ZOM1 \leftarrow 120 (LnLOR1 - 1)$	$Tmp \leftarrow SiCi(A1)$	$C7 \leftarrow Im(Tmp)$
$ZOM2 \leftarrow 120 \cdot (LnLOR2 - 1)$	$S1 \leftarrow Re(Tmp)$	$Tmp \leftarrow SiCi(A8)$
$I1 \leftarrow \left(1 + \frac{M1}{70M1}\right) \cdot S\beta L1 + \frac{(N1 - j \cdot ZA1) \cdot C\beta L1}{70M1}$	$C1 \leftarrow Im(Tmp)$	$S8 \leftarrow Re(Tmp)$
(M_2) $(N_2 - i \cdot ZA_2) \cdot CBL_2$	$Tmp \leftarrow SiCi(A2)$	$C8 \leftarrow Im(Tmp)$
$12 \leftarrow \left(1 + \frac{M2}{ZOM2}\right) \cdot S\beta L2 + \frac{(M2 - \int 2M2) \cdot O\beta L2}{ZOM2}$	$S2 \leftarrow Re(Tmp)$	$Tmp \leftarrow SiCi(A9)$
$R0 \leftarrow \beta \sqrt{\text{Spacing}^2 + \text{Length}^2}$	$C2 \leftarrow Im(Tmp)$	$S9 \leftarrow Re(Tmp)$
$P_{1} \leftarrow 0 \left(S_{\text{parsing}}^{2} + (I_{\text{parsth}} + I_{\text{parsth}})^{2} \right)$	$Tmp \leftarrow SiCi(A3)$	$C9 \leftarrow Im(Tmp)$
$(1 \leftarrow \beta \cdot \gamma \cdot \beta \cdot \alpha \cdot \beta \cdot \beta \cdot \beta \cdot \alpha \cdot \beta \cdot \beta \cdot \beta \cdot \beta$	$S3 \leftarrow Re(Tmp)$	$O1 \leftarrow 2 \cdot C1 - C2 - C3 + C4 + C5 - C6 - C7$
$R2 \leftarrow \beta \sqrt{\text{Spacing}^2 + (\text{Length2} - \text{Length1})^2}$	$C3 \leftarrow Im(Tmp)$	$O2 \leftarrow 2 \cdot C1 - C2 - C3 + C8 + C9 - C6 - C7$
$R0L \leftarrow \beta \sqrt{Spacing^2 + Length1^2}$	$Tmp \leftarrow SiCi(A4)$	O3 ← S3 - S2 + S5 - S4 + S6 - S7
$\beta L12 \leftarrow \beta L1 + \beta L2$	SA - Re(Tmp)	O4 ← S3 - S2 + S9 - S8 + S7 - S6
$\beta L21 \leftarrow \beta L2 - \beta L1$	St (Ke(Tmp)	$CO12 \leftarrow cos(\beta L12)$
A1 $\leftarrow \beta$ ·Spacing	$C4 \leftarrow Im(Imp)$	
$A2 \leftarrow R0 + \beta L2$	$Tmp \leftarrow SiCi(A5)$	
$A3 \leftarrow R0 - \beta L2$	$S5 \leftarrow Re(Tmp)$	$S112 \leftarrow sm(\beta L12)$

 $SI21 \leftarrow \sin(\beta L21)$ R12A $\leftarrow 30 \cdot (CO12 \cdot O1 + CO21 \cdot O2 + SI12 \cdot O3 + SI21 \cdot O4)$ Q1 $\leftarrow S3 + S2 - 2 \cdot S1 - S4 - S5 + S7 + S6$ Q2 $\leftarrow S3 + S2 - 2 \cdot S1 - S8 - S9 + S7 + S6$ Q3 $\leftarrow C3 - C2 - C4 + C5 + C6 - C7$ Q4 $\leftarrow C3 - C2 - C8 - C9 + C7 - C6$ X12A $\leftarrow 30 \cdot (CO12 \cdot Q1 + CO21 \cdot Q2 + SI12 \cdot Q3 + SI21 \cdot Q4)$ Z12A $\leftarrow R12A + j \cdot X12A$ Z12 $\leftarrow \frac{Z12A}{I1 \cdot I2}$ return Z12 $\cdot \Omega$

Apêndice III – Funções seno integral e cosseno integral – *script* **MathCad**:

(ver https://pt.wikipedia.org/wiki/Integral_trigonom%C3%A9trica)

SiCi(x) := EPS $\leftarrow 6 \cdot 10^{-8}$ EULER $\leftarrow 0.5772156649$ MAXIT $\leftarrow 1000$ for $i \in 2... \text{MAXIT}$ $a \leftarrow -(i-1) \cdot (i-1)$ $b \leftarrow b+2$ $d \leftarrow \frac{1}{a \cdot d + b}$ $c \leftarrow b + \frac{a}{c}$ $\Delta \leftarrow c \cdot d$ $h \leftarrow h \cdot \Delta$ $\text{FPMIN} \leftarrow 1.10^{-30}$ $FPMIN \leftarrow 1.10$ $TMIN \leftarrow 2.0$ $t \leftarrow |x|$ if t = 0.0 $Si \leftarrow 0.0$ $Ci \leftarrow \frac{-1.0}{FPMIN}$ return (Si Ci)
if t > TMIN $b \leftarrow 1.0 + j \cdot t$ $c \leftarrow \frac{1.0}{FPMIN} + j \cdot 0$ $d \leftarrow \frac{1 + j \cdot 0}{b}$ $h \leftarrow d$ break if $(|\operatorname{Re}(\Delta) - 1.0| + |\operatorname{Im}(\Delta)|) < \operatorname{EPS}$ error("SiCi(.) exceeded maximum number of iterations!") if i > MAXIT $h \leftarrow h \cdot (\cos(t) - j \cdot \sin(t))$ Ci \leftarrow -Re(h) Si \leftarrow \frac{\pi}{2} + Im(h)

otherwise

if $t < \sqrt{FPMIN}$ $\sum c \leftarrow 0.0$ $\sum s \leftarrow t$ otherwise $\sum \leftarrow 0.0$ $\sum c \leftarrow 0.0$ $\sum s \leftarrow 0.0$ $\sum s \leftarrow 0.0$ $Sign \leftarrow 1.0$ Fact $\leftarrow 1.0$ Odd $\leftarrow 1$

for $k \in 1...$ MAXIT $Fact \leftarrow Fact \cdot \frac{t}{k}$ $\text{Term} \leftarrow \frac{\text{Fact}}{k}$ $\Sigma \leftarrow \Sigma + \text{Sign-Term}$ $\operatorname{Err} \leftarrow \frac{\operatorname{Term}}{|\Sigma|}$ if Odd > 0 $Sign \leftarrow -Sign$ $\Sigma s \leftarrow \Sigma$ $\Sigma \leftarrow \Sigma c$ otherwise $\Sigma c \leftarrow \Sigma$ $\Sigma \leftarrow \Sigma s$ break if Err < EPS Odd ← -Odd error("SiCi(.) exceeded maximum number of iterations!") if k > MAXIT $Si \leftarrow \Sigma s$ $Ci \leftarrow \Sigma c + ln(t) + EULER$ $Si \leftarrow -Si \text{ if } x < 0.0$ return Si + j ·Ci