Reference Materials

The Internet. Use a net browser such as Netscape. Do a search on “genetic algorithms.” You will find more information than you care to find. The search may be narrowed by specifying additional search words. Some of the better web sites to start exploring include

http://www.aic.nrl.navy.mil
http://alife.santafe.edu

Also available from the internet is The Hitch-Hiker’s Guide to Evolutionary Computation (Heitkotter and Beasley, 1994). This excellent up-to-date resource lists everything from where to get free software to many frequently asked questions (FAQ) about evolutionary programming.

Articles. Many of the major scientific and engineering journals have published introductory articles on genetic algorithms.

Holland’s article in Scientific American (Holland, 1992).

Books. If you are interested in the theory of genetic algorithms, Holland (1975), Goldberg (1989), Mitchell (1996), Whitley (1993), and Schwefel (1995) will satisfy you. The other books [including Goldberg (1989)] are more application oriented.

Journals. Several journals publish articles on genetic algorithms. Some include: Evolutionary Computation

IEEE Expert Intelligent Systems & Their Applications
IEEE Transactions on Systems, Man, and Cybernetics
BioSystems
Complex Systems
Machine Learning
Short Courses. Several institutions offer short courses on genetic algorithms, including Georgia Institute of Technology and UCLA. In addition, many conferences offer short courses and tutorials on various aspects of genetic algorithms.

Software. There is a lot of free software available. For the latest, consult Heitkotter and Beasley (1994). Some examples include:

- MATLAB Genetic Algorithm Toolbox
- Genetic Search Implementation System (GENESIS)
- Genetic Algorithm for Numerical Optimization for Constrained Problems (GENOCOP)
- Better to Use Genetic Systems (BUGS)
- GENEsYs
- Tool Kit for Genetics-Based Applications (TOLKIEN)

Conferences. There are several conferences each year devoted to evolutionary programming, including

- Conference on Genetic Programming
- IEEE Conference on Evolutionary Computation
- International Conference on Genetic Algorithms
- Annual Conference on Evolutionary Programming
- Foundations of Genetic Algorithms
- Parallel Problem Solving from Nature
PSEUDOCODES

Some guidelines for reading the pseudocode:
- A matrix is a variable with all capital letters
- A vector is a variable with the first letter capitalized
- A scalar is all lowercase letters
- A function provided by the user is in boldface
- A function described by pseudocode is italicized
- % indicates a program comment

User-provided subroutines are described below:

- random(r, c)—generates an $r \times c$ matrix of uniformly distributed random numbers.
- round(*)—rounds numbers to nearest integer.
- costfunction(CHROMOSOMES)—returns a column vector with the cost associated with each chromosome or row in the matrix CHROMOSOMES.
- sort(Cost, CHROMOSOMES)—sorts the Cost vector and associated chromosomes from lowest cost in row 1 to highest cost in the last row. It also truncates the vector and matrix to the first popsize rows.
- min—finds the minimum value of the vector.
- mean—finds the average value of the vector.
- std—finds the standard deviation of the elements in the vector.
- roundup—rounds numbers to next highest integer.

Most math packages provide some form of the above functions. Canned subroutines for programming languages are generally available for most of these functions as well.

The main genetic algorithm and pairing function are the same for the binary and continuous versions. However, the mating and mutation functions are quite different, so two versions are provided.
Pseudocode for a Binary Genetic Algorithm

%-----------------
% Define variables
%-----------------
maxiterations =? % maximum number of iterations
ipopsize =? % population size of generation 0
popsize =?×ipopsize % population size of generations 1 through...
keep =?×popsize % number of chromosomes kept for mating
bits =? % total number of bits in a chromosome
muterate =? % mutation rate

%-----------------
% Create the initial population, evaluate costs, and sort
%-----------------
CHROMOSOMES = round(random(ipopsize,bits)) % matrix of random 1s & 0s

% Let the generations begin!
% Cost - vector containing the costs
% sort - sorts & truncates costs & chromosomes
%-----------------
gen# = 0 % initial generation
quit = ‘no’ % convergence check
while gen# < maxiterations & quit = ‘no’
gen# = gen# + 1 % increment the generation number
Cost = costfunction(CHROMOSOMES)
[Cost, CHROMOSOMES] = sort(Cost, CHROMOSOMES)

% Evaluate cost statistics
%-----------------
Mincost(gen#) = min(Cost) % minimum cost
Meancost(gen#) = mean(Cost) % mean cost
Stndcost(gen#) = std(Cost) % standard deviation of cost

%-----------------
The chromosomes are paired and offspring are produced
%-----------------
[Mom Dad] = pair(CHROMOSOMES, Cost, keep, popsize)
CHROMOSOMES = matebin(Mom, Dad, CHROMOSOMES, keep, popsize, bits)
% mutate the population with (popsize \times N \times mutaterate) mutations

\texttt{CHROMOSOMES = mutatebin(CHROMOSOMES, mutaterate, popsizexbits)}

% Check for convergence

if \texttt{Mincost(gen#) < ? and/or Meancost(gen#) < ?}
\hspace{1cm} and/or \texttt{Stndcost(gen#) < ?} \Rightarrow \texttt{quit = 'yes'}

end
function \([\text{Mom, Dad}]=pair(\text{CHROMOSOMES, Cost, keep, popsize})\)

\[
\text{Prob}(n) = \begin{cases}
\frac{n}{\sum_{r=1}^{\text{replacements}} r} & \text{if } |\text{cost}(n)| < \sum_{r=1}^{\text{replacements}} |\text{cost}(r)| \\
\frac{\text{cost}(n) - \min\{\text{cost(\text{replacements} + 1)}\}}{\sum_{r=1}^{\text{replacements}} |\text{cost}(r) - \min\{\text{cost(\text{replacements} + 1)}\}|} & \text{otherwise}
\end{cases}
\]

% cumulative probabilities
\text{Odds} = [0, \text{Prob}(1), \text{Prob}(1) + \text{Prob}(2), \ldots, \sum_{n=1}^{\text{replacements}} \text{Prob}(n)]

% Roll dice for parents
\text{Pick1} = \text{random}(1, \text{replacements}) \quad \% \text{vector of random numbers for Mom}
\text{Pick2} = \text{random}(1, \text{replacements}) \quad \% \text{vector of random numbers for Dad}

% finds the two mates
ic = 1 \quad \% \text{initialize counter}
\text{while } ic < \text{replacements} \quad \% \text{counter must be less than replacement number}
\text{for } id = 2: \text{keep} + 1
 \text{if } \text{Pick1}(ic) < \text{Odds}(id) \& \text{Pick1}(ic) > \text{Odds}(id - 1) \rightarrow \text{Mom}(ic) = id - 1
 \text{if } \text{Pick2}(ic) < \text{Odds}(id) \& \text{Pick2}(ic) > \text{Odds}(id - 1) \rightarrow \text{Dad}(ic) = id - 1
 \text{end}
\text{ic} = ic + 1 \quad \% \text{increment counter}
\text{end}
Pseudocode for Binary Mating

function CHROMOSOMES = matebin(Mom,Dad,CHROMOSOMES, keep,popsize,bits)

% % selects a crossover point
% % roundup rounds to next highest integer
%--
Xpoint = roundup{(N – 1) × random(1,M)}

--
% % row indx contains first offspring
% % row indx + 1 contains second offspring
% % mom - vector containing row numbers of first parent
% % dad - vector containing row numbers of second parent
%--
for ic = 1:popsize
indx = 2 × (ic – 1) + 1
CHROMOSOMES(keep + indx,1 → popsise) =
 [CHROMOSOMES(Mom(ic),1 → Xpoint(ic)),
 CHROMOSOMES(Dad(ic),Xpoint(ic) + 1 → popsise)]
CHROMOSOMES(keep + indx + 1,1 → popsise) =
 [CHROMOSOMES(Dad(ic),1 → Xpoint(ic)),
 CHROMOSOMES(Mom(ic),Xpoint(ic) + 1 → popsise)]
end
Pseudocode for Binary Mutation

function CHROMOSOMES = mutatebin(CHROMOSOMES, muterate, popsize, bits)

% Inside a loop iterating over the number of mutations, a random
% bit in the population is selected and changed from a 1 to a 0 or
% from a 0 to a 1.

#mutations = roundup(popsizexbitsxmuterate) % number of mutations

for ic = 1 → #mutations
 row = roundup((popsizex2)xrandom(1,1)) + 1 % random row
 col = roundup((bitsx2)xrandom(1,1)) + 1 % random column
 CHROMOSOMES(row, col) = CHROMOSOMES(row, col) − 1 % mutation
end
Pseudocode for a Continuous Parameter Genetic Algorithm

% Define variables
%---------------------
popsizem = ? \times ipopsizem \quad \% \text{population size of generations 1 through...}
maxiterations = ? \quad \% \text{maximum number of iterations}
ipopsizem = ? \quad \% \text{population size of generation 0}
popsizex = ? \times ipopsizex \quad \% \text{population size of generations 1 through...}
keep = ? \times popsizex \quad \% \text{number of chromosomes kept for mating}
pars = ? \quad \% \text{total number of parameters in a chromosome}
mutaterate = ? \quad \% \text{mutation rate}
hi = ? \quad \% \text{maximum parameter value}
lo = ? \quad \% \text{minimum parameter value}

% Create the initial population, evaluate costs, and sort
%--
CHROMOSOMES = (hi - lo) \times \text{random}(ipopsizem, \text{bits}) + lo \quad \% \text{matrix of random 1s & 0s}

% Let the generations begin!
%---------------------
gen# = 0 \quad \% \text{initial generation}
quit = 'no' \quad \% \text{convergence check}
while gen# < maxiterations & quit = 'no'
gen# = gen# + 1 \quad \% \text{increment the generation number}
Cost = \text{costfunction}(\text{CHROMOSOMES})
[Cost, CHROMOSOMES] = \text{sort}(Cost, \text{CHROMOSOMES})

% Evaluate cost statistics
%---------------------
Mincost(gen#) = \text{min}(Cost) \quad \% \text{minimum cost}
Meancost(gen#) = \text{mean}(Cost) \quad \% \text{mean cost}
Stdncost(gen#) = \text{std}(Cost) \quad \% \text{standard deviation of cost}

% The chromosomes are paired and offspring are produced
%--
[Mom Dad] = pair(CHROMOSOMES, Cost, keep, popsize)
CHROMOSOMES = matecon(Mom, Dad, CHROMOSOMES, keep, popsize, pars)

% % mutate the population with (popsize×N×muterate) mutations
% %
CHROMOSOMES = mutatecon(CHROMOSOMES, muterate, popsize, pars, hi, lo)

% % Check for convergence
% %
if Mincost(gen#) < ? and/or Meancost(gen#) < ? and/or Stndcost(gen#)
 < ?⇒ quit = 'yes'

end
function CHROMOSOMES=matecon(Mom,Dad,CHROMOSOMES,
 keep,popsize,pars)

% row indx contains first offspring
% row indx+1 contains second offspring
% mom - vector containing row numbers of first parent
% dad - vector containing row numbers of second parent
% for ic = 1 → popsize
indx = 2×(ic−1)+1
alpha = roundup(random×pars)
beta = random
CHROMOSOMES(keep+indx,alpha) = CHROMOSOMES(Mom(ic),alpha)
 − beta × [CHROMOSOMES(Mom(ic),alpha)
 − CHROMOSOMES(Dad(ic),alpha)]
CHROMOSOMES(keep+indx+1,alpha) = CHROMOSOMES(Dad(ic),alpha)
 + beta × [CHROMOSOMES(Mom(ic),alpha)
 − beta × CHROMOSOMES(Dad(ic),alpha)]
if alpha > 1 & alpha < pars

CHROMOSOMES(keep+indx,alpha+1→pars) = CHROMOSOMES(keep+indx+1,alpha+1→pars)
CHROMOSOMES(keep+indx+1,alpha+1→pars) = CHROMOSOMES(keep+indx,alpha+1→pars)
end
end
Pseudocode for Continuous Parameter Mutation

function CHROMOSOMES = *mutatecon*(CHROMOSOMES, maxval, mutaterate, popsize, pars, hi, lo)

% Inside a loop iterating over the number of mutations, a random parameter in the population is selected and replaced by a new random parameter.

#mutations = roundUp(popsize × pars × mutaterate) % # mutations

for ic = 1 → #mutations
 row = roundUp(popsize × random) + 1 % random row
 col = roundUp(pars × random) % random column
 CHROMOSOMES(row, col) = (hi − lo) × random + lo % mutation end