
Performing these operations on the determinant A we
get

aRn dR2-0 L8R2-R=O
and

Z1Z2 + Z1Z3 + Z2Z3 = 0

Z, + 2Z3 = 0
(27)

from which we obtain, immediately,

Z3= - I Zl = Z2. (28)

It remains to show that under (28), B-C. To see
this, substitute (28) in the expressions for B and C,
getting

R1 + 12
B= -Z

0

R1 ± 2Z
C = -i

- Z1

1Z - Z,

-Zi 2Z1+ 2R

-RR2 -ZR

-Z1 - Z1

1R2 + 2!~Z1 - .l
- Zi 2Z, + 2R

In the expression for C, interchange the second and
third rows, getting

R1 + FZ,
c==- Z1

2z1

IZ -Z,

-Zi 2Z1+ 2R .

R2 + 2Z1 - Z

Next multiply the elements of the second row by a and
add the results respectively to the elements of the
third row, getting

R1 + 2Z
C= - -Zi

0

Finally, change the signs
row, to get

R1 + 2ZI
C = -Zi

0

which was to be proved.

-21 - Z,
-Z1 2Z1+ 2R .

R2 R

of the elements of the last

z1~Zj -Z

-Z1 2Z1+ R -B
- R2 -R

Theory of Antennas of Arbitrary Size and Shape*
S. A. SCHELKUNOFFt, ASSOCIATE, I.R.E.

Summary- In this paper there are presented (1) a quite general
method of antenna analysis; (2) a physical picture of transmission
phenomena in antennas, based on this method; and (3) an expression
for the input impedance of antennas of any shape, whose transverse
dimensions are small compared with the wavelength. In a brief his-
torical sketch of the antenna problem the factors which must be taken
into consideration in solving the problem are discussed.

While in ordinary transmission lines the voltage is proportional
to the charge, this is not the case in antennas. The explanation lies in
the fact that antennas are multiple transmission lines (like wave
guides) and not simple, that is, single-mode transmission lines. Our
present theory is based on the voltage-current equations since these ap-
pear to be considerably simpler than charge-current equations. The
latter are considered only briefly.

In the absence of dissipation and in so far as the total voltage wave
and the "principal" current wave are concerned, radiation is strictly
an end effect. In so far as the total current and the total charge waves
are concerned, radiation effects are distributed (nonuniformly) along
the entire antenna.

In the first approximation, regardless of the shape of the wire the
charge is proportional to the voltage and waves are sinusoidal, the cur-
rent wave having nodes while the voltage wave and the charge wave
antinodes at the ends of the antenna. The second approximation de-
pends on the shape of the longitudinal cross section of the antenna as
well as on the size of the transverse cross section.

Our analysis is based on Maxwell's equations but the final results
are quite simple and the physical picture growing out of this mathe-
matics is attractive to an engineer. It is permissible to think that a wave
emerging from a generator in the center of an antenna is guided by an
antenna until it reaches its "boundary sphere" passing through the
ends of the antenna and separating the antenna regionfrom the external
space; at the boundary sphere some energy passes into the external
space and some is reflected back-a situation existing at the junctuire
between two transmission lines with different characteristic impedances.
We may also think of the antenna as the wall of an electric horn with
an aperture so wide that one can hardly see the horn itself-just like a
Cheshire Cat: only the grin can be seen. In fact, the mathematics that
we use is that appropriate to wave guides and electric horns.

* Decimal classification: R120. Original manuscript received by
the Institute, April 25, 1941.

t Bell Telephone Laboratories, Inc. New York, N. Y.

The antenna problem is stated in Section I and its history is briefly
discussed in Section II; Section III contains a summary and a dis-
cussion of the results for antennas with uniformly distributed capaci-
tance (conical antennas); Section IV is devoted to antennas with non-
uniformly distributed capacitance; Section V presents a derivation of the
formulas contained in Section III; Section VI reviews the induced-elec-
tromotive-force method of computing radiation and its use in the present
problem; Section VIi is devoted to the current-charge equations; Sec-
tion VIII is devoted to wave propagation along parallel wires; in Sec-
tion IX an expression is given for the impedance of an infinitely long
cylindrical wire, and Section X deals with an approximation needed
in our discussion of the problem.

I. INTRODUCTION
Two Problems

T IS beyond the scope of this paper to discuss ade-
quately prior work on radiation from conductors
of finite length and only a few representative

papers will be cited. Two problems have presented
themselves. In Problem A the current distribution in
an antenna is given and it is required to find the field
and, hence, the external electromotive forces needed
to produce the giveen current distribution. Problem B
is the inverse of A: The distribution of applied or ex-
ternal forces in an antenna is given and it is required to
obtain the field and, hence, the current produced by
the applied forces.

Problem A has been solved rigorously and com-
pletely with the aid of retarded potentials. On the
other hand, Problem B presents many difficulties and
it is the engineer's hard luck that he happens to be
interested in just this problem.
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Solution of Problem A Is Useful within Limits

The solution of Problem A is not altogether useless
to the engineer. Theory is not the only source of in-
formation concerning the current distribution pro-

duced by given forces. For example, the current dis-
tribution can be determined experimentally, thus, it
has been known long ago that on a thin wire the cur-

rent is distributed almost sinusoidally (Fig. 1) and
this fact has been employed to obtain approximately
the radiated power, the input impedance, and the field.
If the length of the wire is in the neighborhood of one

half of the wavelength (or one quarter of X if the
ground takes the place of the other half), the results
are fairly satisfactory from the practical point of view.'
But when the length becomes equal to 1 wavelength,
then a more accurate solution becomes necessary. The
theoretical radiation pattern may be still good enough
(except in the former "null directions") but the input

Fig. 1-Current distribution in an infinitely thin perfectly con-
ducting antenna of any shape is sinusoidal with current nodes
at the ends of the antenna. This distribution may be taken as
the first approximation for thin antennas.

impedance is computed to be infinite. While infinity
may be regarded as a legitimate first approximation to
a large quantity, it is a useless approximation. For free-
space antennas of length nX, practical applications
require a second approximation and this, in so far as

theory is concerned, leads us back to Problem B.

II. HISTORY OF PROBLEM B AND GENERAL COMMENTS
ON METHODS FOR ITS SOLUTION

Two Methods of Approach and an Unproved "Proposi-
tion a"

Broadly speaking, we may distinguish between two
methods of approach to the solution of Problems B.
Some writers2-6 have based their work on Maxwell's
equations, that is, on the electromagnetic laws that
are considered well established; while, other writers7-12

'There may be occasions, of course, when a more accurate solu-
tion would be desirable and, certainly, no one is likely to object
to having one, provided it is simple enough.

2 M. Abraham, "Die electrischen Schwingungen um einen stab-
f6rmigen Leiter, behandelt nach der Maxwell'schen Theorie," Ann.
der Phys., vol. 66, pp. 435-472, 1898.

L. V. King, "On the radiation field of a perfectly conducting
base insulated cylindrical antenna over a perfectly conducting plane
earth, and the calculation of radiation resistance and reactance,"
Phil. Trans., ser. A, pp. 381-422; November 2, 1937.

4 G. Mie, "Elektrische Wellen an Zwei Parallelen Drahten,"
Ann. der. Phys., p. 248, 1900.

5 Leigh Page and Norman I. Adams, Jr., "The electrical oscilla-
tions of a prolate spheroid, Paper I," Phys. Rev., pp. 819-831; May
15, 1938.

6 John R. Carson, "Propagation of periodic currents over non-
uniform lines," Electrician, pp. 272-273; March 4, 1921.

7 C. P. Steinmetz, "The general equations of the electric circuit
-III," Proc. A.I.E.E., p. 255, 1919.

repulsed by the complexity of such methods, ventured
to start from a new and unproved premise. This new
Proposition a may be formulated as follows: power
losses due to radiation produce the same effect on
transmission of electric waves along conducting wires
as losses due to dissipation. This premise is incon-
sistent with Maxwell's equations (see Section VII);
and yet, with its aid some approximate results have
been obtained. We shall return to this point later.

Spheroidal Antennas
Those writers who prefer "safe" premises as a point

of departure have to look for some particular shape of
conductors which would lend itself more readily to
mathematical treatment. Spheroids have been the
first to attract attention. Abraham' treated free oscilla-
tions on a perfectly conducting thin prolate spheroid
and obtained an expression for the resonant frequencies
or wavelengths. Recently, Page and Adams5 and, then,
Ryder in his as yet unpublished thesis, have dealt
with forced oscillations on spheroids.

Slow Convergence off Resonance
There is a weakness inherent in the method used by

Page and Adams. This method employs spheroidal
harmonics and off resonance leads to complicated and
slowly converging series. In their numerical computa-
tions, the authors limited themselves to spheroids
about one-half wavelength long.'3

The Importance of Shape
An important point, however, is that while in the

first approximation the current distribution is inde-
pendent of the size of the transverse cross section of
the antenna and of the shape of the longitudinal cross
section and is sinusoidal for all conductors, in the
second approximation the current distribution de-
pends on both factors. It was Rayleigh14 who, in dis-
cussing Abraham's2 and Pollock's15 papers, was the
first to point out that resonant frequencies of finite
wires are independent of the shape of the wires in the
first approximation but not in the second. Rayleigh's

8 Ronold King, "Telegraphist's equations at ultra-high fre-
quencies," Physics, pp. 121-125; April, 1935.

" P. 0. Pedersen, "Radiation from a vertical antenna over flat
perfectly conducting earth, Ingenirvidenskabelige Skrifter, ser. A,
Nr. 38, 1935.

10 E. Siegel und J. Labus, "Scheinwiderstand von Antennen,"
Hochfrequenz. und Elektroakustik, Bd. 43, pp. 166-172, 1934.

11 J. Labus, "Rechnerische Ermittlung des Impedanz von An-
tennen," Hochfrequenz. und Elektroakustik, Bd. 41, pp. 17-23,
1933.

12 L. J. Chu and J. A. Stratton, "Forced oscillations of a prolate
spheroid," Jour. Appl. Phys., pp. 241-248; March, 1941.

13 Since completion of this paper, L. J. Chu and J. A. Stratton"
have published a comprehensive discussion of forced oscillations on
prolate spheroids and dealt with the conditions off resonance as
well as near resonance.

14 Lord Rayleigh, "On the electrical vibrations associated with
thin terminated conducting rods," Phil. Mag., pp. 104-107; July,
.1904.

15 J. A. Pollock, "A comparison of the periods of the electrical
vibrations associated with simple circuits," Phil. Mag., pp. 635-652;
June, 1904.
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conclusion is borne out by Englund's experiments"6 and
by our calculations. In fact, not only the resonant fre-
quencies but other quantities as well are affected, in
the second approximation, by the size of the transverse
cross section of the antenna and the shape of the
longitudinal cross section; consequently, a way must
be found to take these factors into consideration.

Cylindrical A ntennas
A different method was chosen by King.3 Starting

from an integral equation, he obtained the second
approximation to the solution of Problem B for a thin
cylindrical wire and his work could be extended to
wires of other shapes. If anything, this method is more
complicated than the one employed in the case of
spheroidal antennas and it does not lend itself to
any simple physical interpretation; one just has to
take the final quantitative results. On the other hand,
the calculations are carried out for cylindrical an-
tennas which are of greater practical interest than
spheroidal antennas.

Our Method and Its Advantages
We also start with Maxwell's equations but choose

conical conductors. There are several advantages to
this choice. In the first place, the functions to whicb
one is naturally led represent waves on the wire rather
than free oscillations. Consequently, the conditions
existing off resonance can be studied just as readily
as those near resonance. Furthermore, this means that
no complications will arise if we break the wire at some
point and insert a resistance, or any impedance, for
that matter.
The difference between our method of treating the

conical wire and the conventional method of treating
the spheroid is precisely the difference existing between
two possible methods of dealing with a finite section of
an ordinary transmission line. On one hand, the volt-
age and the current in such a section can always be
represented as the result of interference of progressive
waves traveling in opposite directions; and, on the
other hand, the same quantities can be represented in
terms of "harmonics" corresponding to natural oscil-
lations in the section of the line. The first method is so
much simpler than the second, which gives the results
as infinite series of partial fractions, that probably only
few are even aware that the solution could have been
found by the second method in the first place.

The Shape of Conductors May Be Taken into Account
Another advantage in our choice of conical shape is

that in the second approximation the effects of the
shape of the conductor become separated from the
"end effect" or radiation."7 Consequently, the equa-
tions developed for conical wires can be amended to
take care of the "shape effect."

16 C. R. Englund, "The natural period of linear conductors,"
Bell Sys. Tech. Jour., pp. 404-419; July, 1928.

Antenna as a Transmission Line
Finally, our method turns out to be consistent with

a physical picture which is rather attractive to the
engineer. Let us suppose that a wire is energized at the
center. A spherical wave emerging from the generator
is guided by the antenna until it reaches the limit of
the "antenna region," that is, the sphere passing
through the ends of the antenna; there, some of the
energy passes into the outer space and some is re-
flected back, a situation existing when one transmis-
sion line is joined to another.

Antenna as an Electric Horn

We may also think of the wire as the wall of an elec-
tric horn with an aperture so wide that one can hardly
see the horn itself. In fact, the mathematical analysis

(I) (2) (3) (4) (5) (6) (7)

K
21 = _ ==_- = CHARACTERISTIC Zt

IM1PEDANCE

K

CHARACTERISTIC
IMPEDANCE

Fig. 2-The input impedance of a conical antenna of any size is
equal to the input impedance of a uniform transmission line
with a certain "output" impedance Zt. The input impedance
of a thin antenna of any shape may be similarly represented,
except that the characteristic impedance will be variable.

used by us is precisely the analysis appropriate to
wave gu'ides and electric horns. We end up with a pic-
ture of the antenna as a transmission line (Fig. 2)
whose output impedance Zt represents the end effect.
The real part Rt of Zt represents radiation and should
properly be called the "radiation resistance"; it is the
resistance of the outer space as seen from the ends of
the antenna. Unfortunately, this name has been gen-
erally given to a quantity which turns out to be equal
to K2/Rt.
Methods Based upon an Unproved Hypothesis
The idea that the ordinary transmission-line theory

could be amended to take care of radiation effects had
occurred to Steinmetz7 as long ago as 1919, in connec-
tion with his studies of electric waves on parallel wires.
He failed to obtain correct results because twice he
was deceived by physical intuition. In the first place,
he believed that radiation losses and dissipation losses
produce the same effect on transmission of waves. In
effect this was a new proposition, which we have called
Proposition a, that could be inconsistent with estab-
l'ished laws and thus he was taking chances. It is per-
fectly true that each element of current-carrying wire

17 From the point of view developed in this paper there is no
difference between the "end effect" and radiation.
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radiates power; but at the same time it receives equal
power from the surrounding medium due to the action
of other elements plus power that is dissipated in that
element.'8 In such circumstances, it is impossible to
decide in advance just how radiation affects the cur-
rent and voltage distribution on the wire.

The Hypothesis Is Wrong

In Section VIII there is given a simple and straight-
forward proof that the voltage across a pair of parallel
perfectly conducting wires is not attenuated. This proves
that Proposition a is not true as it stands. Neverthe-
less, we shall have an occasion to point out that there
is some truth in this proposition.

Effect of Phase Velocity on Radiation
This brings us to another point. Proposition a has

nothing to do (at least directly) with the very large
value that Steinmetz obtained for the total radiation
from a parallel pair. He used the same method which
had been used before and which has been used since
for approximate solutions of similar problems; but he
apparently thought that since the phase velocity of
waves along the line was very high he could make it
infinite, and assume, in making calculations of radia-
tion, that the currents along the entire line were in
phase. Thus, he found that the radiated power was
proportional to the length of the line while in reality
the power radiated by a long line is independent of its
length.4"9 This discrepancy is due entirely to the effect
of phase velocity of the current waves along the line
and has nothing to do with the manner in which radia-
tion affects the current distribution itself. For a dis-
cussion of other aspects of the problem of radiation
from parallel wires the reader is referred to Carson.20

Single Wires
Pedersen9 and also Siegel and Labus0l1 made use of

Proposition a in their equations for a single wire but
they based their computations on more nearly the
actual current distribution in the wire. Thus they com-
puted an approximately correct total radiated power
and only then they postulated the character of its dis-
tribution.

Pederson has tried two different hypotheses. First
he assumed that radiation loss is concentrated at the
current antinode and then he assumed it to be dis-
tributed uniformly along the antenna. The current dis-
tributions calculated on either of these two assump-
tions turned out to be nearly the same and checked
fairly satisfactorily with a measured current distribu-
tion.

18 If the wire is perfectly conducting, the tangential electric in-
tensity must vanish at the surface of the wire and the flow of power
from the wire or to the wire is 0. If the wire is imperfectly conduct-
ing the flow of power is into the wire and not out of it.

19 John R. Carson, "Radiation from transmission lines," Jour.
A.I.E.E., p. 789; October, 1921.

20 John R. Carson, "The guided and radiated energy in wire
transmission," Jour. A.I.E.E., pp. 906-913; October, 1924.

Naturally, the calculated expression for voltage dis-
tributioon must necessarily be wrong (Section VIII);
but no voltage measurements have ever been made.
Furthermore, for comparatively short antennas the
current distribution does not markedly depend on just
where the power is lost (see Section X).
Whatever may be said about the method, Pedersen

succeeded in obtaining better approximations to the
solution of the antenna problem than the ones avail-
able at that time.

III. ANTENNAS WITH UNIFORM CHARACTERISTIC
IMPEDANCES-GENERAL DiscussIoN

AND SUMMARY
Perfect Conductivity

Unless otherwise specified all conductors are as-
sumed to be perfect. This assumption simplifies the
mathematics and separates the effect of radiation on
transmission of waves along an antenna from the effect
of dissipation. In the first approximation it is reason-
able to suppose that the two effects are independent
and can be superimposed.

Transmission Modes

Until recently whenever one thought of electric
waves guided by a pair of parallel wires or by coaxial
cylindrical conductors, one was apt to visualize a pic-
ture of electric lines of force extending from one con-
ductor to the other and lying in planes perpendicular
to them. that is, in equiphase surfaces. One was con-
scious that near the ends of the conductors the field
was somewhat warped; but one felt that the end effect
was small and could be ignored. Thus one was con-
cerned with one configuration of lines of force, with
one propagation constant, with one phase velocity,
with one characteristic impedance, and with one pair
of transmission equations, that is, with one transmis-
sion mode. A transmission line with a single transmis-
sion mode will be called a simple transmission line.
But physical transmission lines are multiple. They

are capable of guiding many types of waves, with dif-
ferent configurations of lines of force, with different
propagation constants and with different characteris-
tic impedances. Recently, this fact has burst into
prominence in connection with the waves in hollow
metal tubes; but the conventional lines are also mul-
tiple lines. The only reason why in the past they were
regarded as simple lines is due to the fact that their
transverse dimensions were so small compared with
the wavelengths in which engineers happened to be
interested that only the first transmission mode was
quantitatively significant.

This situation may be made clearer by an analogy
with an electric circuit comprised of a physical resistor,
a physical inductor, and a physical capacitor in series.
Such a circuit is usually regarded as a simple electric
circuit, with one natural frequency or, taking the
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decrement into account, with one "natural oscillation
constant." In reality the circuit can oscillate in infi-
nitely many modes; it is only because the first natural
frequency is very much lower than the rest that in
ordinary applications the circuit behaves as if it were
a simple circuit.
The most prominent transmission mode of a given

line will be called the "sprincipal" or the 'dominant"
mode.

Principal Waves Guided by Two Coaxial Cones

Let two coaxial conical conductors, having a com-
mon axis (Fig. 3), be energized at the common apex.
Intuitively one feels that if the cones were of infinite
length, the wave would be such that the lines of elec-

(A) (B)

Fig. 3-Cross sections of infinitely long conical conductors and
electric lines of force for principal waves.

tric force would follow the meridians of spheres con-
centric with the apex of the cones. There is indeed a
wave, namely, the transverse electromagnetic spherical
wave (TEM) for which this is true21; this wave turns
out to be the most prominent and we shall call it the
principal wave.

If we imagine a homogeneous spherical conductor
coinciding with some equiphase surface, then the out-
ward-bound progressive wave will be reflected from
it. Electric lines, however, will still follow the meridi-
ans.

Equations for Principal Waves
Even from elementary considerations it is obvious

that in so far as principal waves are concerned, the
double cone is a uniform transmission line. Consider,
for example, the capacitance per unit length AB (Fig.
3 (B)). The length of the lines of electric force and the
circumference of the conductor are both proportional
to the distance r from the apex; hence, the capacitance
remains unchanged.22

Principal waves are just as easily treated rigor-
ously.21 The series inductance L and the shunt capaci-
tance C per unit leigth and the characteristic im-
pedance K are found to be (for the double cone in
Fig. 3(B))

21S A. Schelkunoff, "Transmission theory of spherical waves,"
Trans. A.I.E.E., pp. 744-750, 1938.

22 Excellent elementary discussions of principal waves on a double
cone may be found in a paper by Howe23 and on page 183 of a
paper by Carter.24

L-- IUlog cot-n
Wr 2

C = c 2

log cot-~
2

77 4 V/K-=log cot = 1201og cot - ^
7 2 2

(1)

where VI is the angle of the cone.25 The phase velocity
of these waves is equal to that of light.
The principal voltage and the principal current can

then be expressed in the following general form

X 2WrVo(r) = Vo+e-4r + Vo-ei3r, A3 - -'
v X

Io(r) = Io+e-i3r + Io-eif3r,

Vo+=KIo+? Vo- = - KIo-. (2)
The voltage between the corresponding points A

and A' is defined here as the line integral of the electric
intensity along any curve joining A and A' and lying
completely in the equiphase surface passing through
A and A'. This definition is in keeping with the usual
definition of the voltage across a pair of parallel wires.
This voltage is difficult to measure except near the
origin and may be regarded as an auxiliary variable
that helps us to find measurable quantities such as the
input impedance, current distribution, etc.

Fig. 4 is a graph of K as a function of the reciprocal
angle. For cones of small angle, 1/i is approximately

1200 _ _ - - - 1'- -
I

<1000

C0. -. _

e600 _ - ~

< 400 _ ==__==_

10 100 1000 lO,OOO
RECIPROCAL RADIANS (4)

Fig. 4-The characteristic impedance of conical antennas of types
shown in Fig. 3(B) as a function of the reciprocal cone angle
'P=a/I, where I is the length of the cone and a is its maximum
radius.

equal to r/p, where p is the radius of the cone at dis-
tance r from the apex, and

2 2r
K = 120 log - = 120 log-

Vt P
(3)

When this ratio r/p is 100, then K-635 ohms; and
for r/p = 1000, K=913 ohms. It is hardly necessary

23 G. W. 0. Howe, "The nature of the electromagnetic waves
employed in radio telegraphy and the mode of their propagation,"
Elec. Rev., pp. 486 489; September 26, 1913.

24 P. S. Carter, 'Simple television antennas," RCA Rev., pp.
168-185; October, 1939.

22 The quantity X7 is the intrinsic inipedance of the medium be-
tween the cones; for air 77 is approximately equal to 120 7r or 377
ohms.
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to point out that K varies much slower than the
ratio r/p.

Standing Principal Waves
If at r=I we assume a reflecting sphere, then the

amplitudes of progressive waves in (2) will be equal
and standing waves will result. For a perfectly con-
ducting sphere at r =1, we shall have

Io(r) = Io cos (l -r),
Vo(r) - Vo sin 3(1- r),

intensity near the A - B axis outside S must be very
small.

Hence the energy carried by the principal wave from
0 to the boundary sphere S must travel thenceforward
in different transmission modes and besides an ordinary
reflection of the principal wave, secondary waves in

\

Vo- iKIo. (4)

These are the equations for a spherical cavity resona-
tor and are of no direct interest in our present problem.

If the sphere were a perfect "magnetic" conductor,
then the current Io(l) would have to vanish instead of
the voltage and the voltage-current equations would
be

Io(r) = Io sin 3(1 r),

Vo(r) = Vo cos /(1 - r), Vo iKIo. (5) Fig. 5-The cross section of a conical antenna
of length I and of the "boundary sphere" S.

We know from experience that the current distribution
in a thin wire is approximately that given by (5). This
suggests that the impedance of free space as seen from
the "output" ends of the antenna is so high compared
with K that an almost complete reflection takes place.
Later in this paper we shall actually prove that as K
tends to infinity, the current and voltage distributions
on a conical wire, on any wire for that matter, ap-

proach (5).
If the spherical sheet at r=l had some finite im-

pedance, we should have

Io(r) = Io sin 3(1- r) + 10 cos (1 -r),
Vo(r) = Vo cos O(1- r) + VI sin (1 -r),

Vo = iKIo, V = iKI°.

The input and the output impedances would then be

Vo(O) - iIo cos A1 + ill sin /1

IO(O) Io sin 31 +1± cos 13l
V 0(l) V0 I

Zt == -iK- (7)
I(l) 10 IO

Sphere of Discontinuity
Equations (6) would have represented the actual

conditions in a conical antenna (Fig. 5), were it not for
the fact that the space outside the boundary sphere S
is a multiple transmission line with a set of transmis-
sion modes different from that in the antenna region.
In particular, in free space there is no transmission
mode which is even similar to the principal mode just
discussed by us. For the latter, the field concentration
near the conductors (if they are thin) is exceedingly
high, because the conductors can support high currents
quite readily. On the other hand, all radial currents in
dielectrics are comparatively feeble and the magnetic

the antenna region will be generated to match the field
outside S. This is our picture of how the "end effect"
comes into being. "Radiation" is one part of this end
effect; the reactive field associated with the secondary
waves is the other part. The "sphere of discontinuity"
is the "aperture" of the antenna regarded as an electric
horn.

Free-Space Transmission Modes

Before considering secondary transmission modes in
the antenna region, we shall review briefly the modes
of transmission in free space. The principal mode in
free space is characterized by electric lines of force
whose shape is suggested in Fig. 6(A). The energy

emitted by a very small doublet travels outward in this
mode. The electric field has two components, the radial
component Er and the meridian component Es. The

(A) (B)
Fig. 6-Electric lines for the first-order transverse magnetic

spherical waves: (A) lines in free space; (B) lines in the presence
of two coaxial conical conductors.

former is proportional to cos 0 and the latter to sin 0,
where 0 is the angle with the axis of the wave. The
radial displacement current flows in one direction in

the "northern" hemisphere and in the opposite direc-
tion in the southern. The two hemispheres play parts

/

\

498 September

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA MARIA. Downloaded on October 24,2020 at 14:01:58 UTC from IEEE Xplore.  Restrictions apply. 



Schelkunoff: Theory of Antennas of Arbitrary Size and Shape

of the two conductors in a transmission line. Of course,
the radial displacement current is not distributed uni-
formly within each hemisphere; the current density is
maximum along the axis of the wave. We should note,
perhaps, that while Er varies ultimately as r-2, where
r is the distance from the doublet, the radial current
density per unit solid angle and hence the total radial
current in each hemisphere are independent of the dis-
tance, except for the phase factor e-igr.
The lines of electric force corresponding to the sec-

ond transmission mode are shown in Fig. 7(A). Higher
transmission modes will have still more sets of closed
loops. Mathematically all these modes are represented
by zonal harmonics; the radial electric intensity is pro-
portional to Pn(cos 0) and the meridian intensity to
(d/dO)Pn (cos 0).

(A) (B)
Fig. 7 Electric lines for the second-order transverse magnetic

spherical waves: (A) lines in free space; (B) lines in the presence
of two coaxial conical conductors.

Any field outside the antenna region, having circular
symmetry, can be represented as the resultant of a
number of waves traveling in the above-discussed
transmission modes.

Secondary Transmission Modes in the Antenna Region
Suppose we have a free-space wave like that shown

in Fig. 6(A) and suppose we insert a thin conical con-
ductor coaxial with the axis of the wave (Fig. 6(B)).
Electric lines of force must be perpendicular to the
conductor; but since the meridian intensity near the
axis is small, we do not expect a very radical change
in the configuration of the lines of force and we expect
that this configuration will resemble the one shown in
Fig. 6(B). This is indeed the case. The major difference
is that in the presence of the conical conductor the
radial electric intensity (and hence the radial current
density) is highest not at the surface of the conductor
but at some distance from it. Right at the surface of
the cone, the radial intensity vanishes. As the angle
of the cone gets smaller, the field distribution becomes
more nearly like free-space field distribution except in
the ever-diminishing region adjacent to the cone.

Fig. 7(B) shows how the second26 mode in the an-
tenna region is related to the second mode in free
space. Incidentally, if the antenna is energized at its

26 It is really the third if we count the principal; but it is more
convenient to designate the principal mode in the antenna region
as the 0th mode.

center, this mode and all other even modes do not ap-
pear. This is because the conduction currents associ-
ated with them flow in opposite directions in the two
halves of the antenna, while the currents produced by
the generator must flow in the same direction.

The Total Voltage Associated with Any Secondary Wave
in the Antenna Region Is Zero
As in the case of the principal wave we define the

voltage between two points on the upper and lower
cones as the line integral of the electric intensity along
any path joining the point of the upper cone to the
point of the lower cone, provided the path is situated
in the equiphase circuit passing through the two
points.27 It is shown in Section V that for all secondary
waves in the antenna region this voltage is equal to
zero

Vm(r) = 0. (8)

Conduction Currents A ccompanying Secondary Waves
Vanish at the Origin
It is shown in Section V that the conduction current

accompanying any secondary wave vanishes at the
origin

Im (0) = 0. (9)
Near the origin Im(r) varies as rm+l+A, where, approxi-
mately, A = 120/K. Thus the effect of the secondary
current waves on the total current is rather unimpor-
tant near the origin, but becomes more pronounced
near the output terminals of the antenna.

Voltage- Current Equations
We can now write the complete voltage-current

equations for a perfectly conducting transmitting an-
tenna energized at its center in the following form:

V(r) = Vo(r), I(r) = Io(r) + I(r), (10)

where the principal voltage-current waves are given
by (6) and the total secondary current I(r) is the sum
of odd secondary current waves

1(r) = I1(r) + I3(r) + Is(r) + *, 7(0) = 0. (11)

The total voltage wave consists of just two principal
waves, of which the second represents the effect of
incomplete reflection at the boundary sphere S. As the
result of this incomplete reflection, the voltage maxi-
mum does not occur at r =1. This is the only effect of
radiation on the voltage wave; no "attenuation" is
introduced into the voltage wave.
The total current wave, on the other hand, is affected

more radically.

Imperfectly Conducting Antennas
It will be seen that I(r) is rather small compared

with Io(r) and it is natural then to assume that the
27 If the points are not situated in the same equiphase surface,

then the voltage between them is not defined.
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imperfect conductivity of an antenna will manifest
itself largely through the principal wave which will
become

Io(r) = - ilo sinh 17(1 - r) + 10 cosh (1 -r),
Vo(r) = - iKIo cosh F(1 - r) + KI° sinh F(1 - r). (12)

The propagation constant 17 is given by

R
r--- + i:, (13)

2K

where R is the resistance (of both cones) per unit
length.

much simpler; and in these equations, radiation may
be represented as a terminal impedance.

Secondary Waves in an Antenna Affect the Amplitudes
of the Principal Waves in a Way an Output Imped-
ance Would

Consider the principal waves in the antenna as
given by (6). Substituting from (10) into the expres-
sion for the output impedance Zt and taking its recipro-
cal, we have

1 Io(l)
Y t = - =V

zt Vo(l)
I(1) -f(l)

±
V(l) V(l)

(14)

The Charge Is not Generally Proportional to the Voltage

It is evident that for principal waves, the electric
charge qo(r) per unit length is proportional to the volt-

(A) (B)
Fig. 8-The relation between principal, secondary,

and total currents at the ends of an antenna.

age Vo(r) = V(r). The charge qm(r) associated with a
secondary wave, being proportional to the derivative
of the current, does not vanish while the corresponding
voltage does; this means that the total charge is not
proportional to the total voltage.

In a simple uniform transmission line the charge is
proportional to the voltage and it does not matter
whether we write the transmission equations in the
voltage-current form or in the charge-current form;
but these two possible forms are quite different in the
case of multiple transmission lines unless one mode
predominates over all others. The charge-current equa-
tions are more complicated than the voltage-current
equations and are here considered (see Section VII)
only because of their bearing on the idea that radiation
takes place continuously along the antenna. In that
section we shall show that the effect of radiation on the
distribution of the total charge (but not the total volt-
age) and the total current in an antenna may be repre-
sented by a continuously distributed series resistance
and a continuously distributed series inductance in
addition to the normal inductance of the antenna re-
garded as a simple transmission line. This coupled
with the fact that for comparatively short antennas
the precise distribution of this resistance has but little
effect on the current distribution, explains why equa-
tions obtained by Pedersen, Siegel, Labus and others
turn out to be fairly satisfactory approximations to
the antenna solution, provided we replace in their
equations V by a quantity proportional to q. On the
whole, however, we find the voltage-current equations

Thus the output admittance consists of two admit-
tances in parallel.

Transmission-line diagrams (Fig. 8) represent the
above relationship graphically. The current -1(1) is
that part of the principal current which is diverted
into a shunt admittance. Whenever a capacitor (or
any impedor) is shunted across a pair of wires, we can
look upon this capacitor as a practical means for pro-
ducing a local field superimposed upon the normal
field surrounding the pair of wires. Broadly speaking
the capacitor is an irregularity in the transmission
line. Sudden termination of the wires in the antenna
case is also an irregularity producing a field which is
superimposed upon the normal field of the principal
waves guided by the antenna.
The total current I(l) may be different from zero.

For instance, if the tops of the conical conductors are
large, appreciable current may flow over the edge; or,
if the antenna itself is thin, end capacitances may be
provided by a number of wires spreading fanwise from
the ends of the antenna wires. However, if the cross
section of the ends of the antenna is small and Ino load-
ing is provided, then the total current is zero and

- I(l)
V(l)

(15)

This is the case with which we are specifically con-
cerned in this paper.

The Output Impedance of a Transmitting Antenna

In Section V we shall prove that if the characteristic
impedance of the antenna is large and if the total cur-
rent at the ends of the antenna is zero, then we have
approximately

1° F(L) - iG(L)
Io K

where the "phase length" of each cone is28

27rl
L== .

x

(16)

(17)

28 It is hoped that our use of L to designate the phase length and
the inductance will not lead to confusion. This use of L in the second
sense is only occasional and it will be obvious from the context
when it is meant to designate the inductance.
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The functions G(L) and F(L) are given by the series

X0 4m+3 2
G(L) =30irLE J2m+3/2(L),

m=o (m+1)(2m+1)
00 4m+3

F(L) =-m307rLE
m-o (m+ 1) (2m+ 1)

(18)

J2m+3/2(L) N2m+3/2(L).

Presently we shall give much simpler expressions for
these functions.

Substituting in (7), we have for the output imped-
ance

K2
= G(L) + iF(L) (19)

It is worth noting that at a distance of 4 wavelength
from the terminals, this impedance appears as

K2
-- = G(L) + iF(L).
zt

(20)

The graphs of the real and imaginary parts of this
transformed impedance are shown in Fig. 9.

The Input Impedance
The input impedance of the antenna is obtained

from the usual transmission-line equations or directly
from (7); thus we have

Z = K

(G + iF) cos --) + iK sin (L--)

K cos (L- + i(G +iF) sin(L--)

GsinrL+ i(F sin L-K cosL)
*~~~~~~~1

(K sin L + F cos L)-iG cos L

Separating the real and the imaginary parts, we obtain

-1 F2+G2
G-i K sin 2L+F cos 2L- sin 2L

_ 2 2Kzi =Z=- ~ ~~F2+G2

sin2 L+- sin 2L+ cos2 L
K K2

(22)

The Case of an Infinitely Large K
If K is infinitely large, then 1°=0 and the current

distribution in the antenna becomes

V(r) = Vo cos (1-r),
I(r) = Io sin B(l - r). (23)

From (22) we find that the input impedance tends
asymptotically to

G(L) + iF(L)
Z -> s L K cot L.

sin' L
(24)

Since the input current tends to 1I sin L, the complex
flow of power is

T =
I
[G(L) + iF(L) - iK sin 2L] 02.

The preceding expressions are the first approxima-
tions to the antenna equations.

Formulas for G(L) and F(L)
The above asymptotic formulas provide a very con-

venient method for obtaining G and F functions. Since
(25) represents the power flow when the current is
sinusoidal with a node at the end of the antenna,
G(L) must be the so-called "radiation resistance" as
referred to the maximum current. This resistance is
independent of the shape of the antenna and hence is
equal to that of a cylindrical wire. The latter can and
has been computed either by the Poynting flux method

u)

I 300
o

LJ--

z

200
I ~

~Ir

0 2 C

PHASE LENGTH, L, IN RADIANS

FIG. 9-The real and the imaginary parts of the "transformed"
output impedance K2/Zt= G(L) +iF(L), where L = 2wl/X.

or by the induced-electromotive-force method (see
Section VI). The latter method can also be used for
computing F(L), except that this time it is necessary
to make calculations for conical antennas. As will be
seen in Section IV, antennas of other shapes than
conical will have an extra reactive component which
must be attributed to the nonuniformity of the line
rather than to the end effect.
Thus we have obtained the following expressions

G(L) = 60(C + log 2L- Ci 2L) + 30(C + logL-2 Ci 2L

+ Ci 4L) cos 2L + 30(Si 4L -2 Si 2L) sin 2L,
F(L) = 60 Si 2L + 30(Ci 4L - log L - C) sin 2L

-30 Si 4L cos 2L, (26)

where C=0.577 is Euler's constant.
The method just outlined can be used successfully

for obtaining second approximations to antenna prob-
lems when terminal conditions are other than those
considered in this paper.

Resonance
From (22) we observe that the input reactance will

vanish when

2KF
tan 2L = - K2-G2-F2 (27)

3 5 0

) i x x
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Inasmuch as we are concerned here with approxima-
tions as far as the first powers of the characteristic
admittance 1/K, we approximate (27) by

2F
tan 2L = --> (28)

K

CHARACTERISTIC IMPEDANCE IN OHMS

Fig. 10-Deviation of the resonant length of
conical antennas from 21= kX/2.

The solution of the above equation is

/kT2F(-
L2

2L-Ik7r- K
k = 1, 2, * .

Hence, the input reactance of a conical antenna van-
ishes when

k7rX
41 K2F) 120 Si k7r+60(-)k+l Si 2k7r=1- =1-- -. (30)
kX irkK irkK

Fig. 11 A Lecher system comprised of two parallel wires, short-
circuited at the left end with a metal disk. A parallel combina-
tion of two admittance boxes on the right represents the end
effect; the conductance box represents radiation and the second
box the end capacitance. It is assumed that s is substantially
smaller than 1.

(29)

If it were not for the end effect, the resonant lengths of
antennas would be given by 21=k/2. The end effect
makes antennas resonate when they are somewhat
shorter than kA/2. For the first three resonances the
shortening effect is shown in Fig. 10. For higher reso-
nances the shortening is substantially equal to 45X/K,
when k is odd, and 15X/K when k is even.

In antennas of other shapes than conical, another
factor affects resonant lengths. This factor will be con-
sidered in Section IV.

Resonance in Lecher Systems

The shortening effect just discussed exists also in
Lecher systems and for the same reason. A sudden
discontinuity introduces a terminal capacitance. Con-

2A1 t IN RADIANS

Fig. 12-The input impedance of conical antennas as a function of
2rl/X and K. Solid curves represent the real component and the
dotted curves the imaginary.

sider a Lecher system "short-circuited" with a metal
disk at one end and open at the other (Fig. 11). The
"open end" is not electrically open and the impedance
across it represents the power loss by radiation and the
end capacitance. If s is the interaxial separation be-
tween the wires and a is their radius, then in the neigh-
borhood of the principal resonance we have approxi-
mately

120(s - a) 1207r2s2 s
C = I G I -K120Olog-) (31)

K2v K2X2 a

where v is the velocity of light. These values have been
computed by the method of the induced electromotive
force from the sinusoidal current distribution, taken as
the first approximation to the true distribution.
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In this case it is easy to show that for the principal
resonance

X = 41 + 4vCK. (32)

Substituting from (31), we have

480(s - a)
X = 4 K+ (33)

For this case, Englund"C has obtained the following
relation experimentally

X = 41 + 12.4, (34)
for wavelengths from 400 to 750 centimeters. In his
setup s=10.1 centimeters, a=0.635 centimeter, and

10000

K = 1200 .

1000

700

600

)000 0. s

VI

2

I

Fig. 13 The input resistance of conical antennas.

K =332 ohms. Substituting these values in (33) we
obtain

X = 41 + 13. 7. (35)

Some of the discrepancy between the measured and
the calculated values is probably due to the fact that
the diameter of the short-circuiting disk was only 15.5
centimeters whereas in computing C we have assumed
the disk to be large enough for the current in it to pro-
duce the same effect on the Lecher system as the
"image" of the system in the disk. Some of the dis-
crepancy (to the extent of a few millimeters) must be
ascribed to the second-order errors in the computed
value and in measurements. The more precise value of
C contains small terms depending on the length I of
the Lecher system; but Englund's formula does not
include such a term.

Input Resistance and Reactance Curves
The input impedance of conical antennas may be

computed from (22). This impedance depends on the
characteristic impedance and on the length of the an-
tenna. In Fig. 12 the resistance and the reactance are
plotted as functions of 2irl/X, where 21 is the length of

2

0

Z
U7
I

z
4

'2
w

z

the antenna in free space. The characteristic imped-
ance K is the parameter; it is defined by (1) and
plotted in Fig. 4. For a vertical antenna of length I

8000

K=1200
7000

6000 _ _C7

5000 _
0

_

4000
90

X Ii

3000 t

700

2 000

t000X X < W __~50
0.36 0,40 0.44 0.48 0.52 0.56 0.60 0.64

V/s

Fig. 14-The input resistance of conical antennas in the
neighborhood of the second resonance.

above a perfectly conducting ground we can use the
same set of curves and only divide by two the ordinates
and the characteristic impedance. For example, the
maximum resistance of an antenna in free space, with
K= 1000, is about 5000; for a vertical antenna of the
same size, K = 500, and the maximum resistance is
2500.

In Fig. 13 the input resistance alone is shown. It will
be observed that the input resistance depends very
markedly on K in the region (shown on a larger scale

V)

I
0
zI

U
z

:

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Fig. 15-The input reactance of conical antennas.

in Fig. 14) around the second resonance, or more gen-
erally in regions around even resonances. The react-
ance curves are shown separately in Fig. 15.
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Current Distribution
In practice, precise knowledge of current distribu-

tion is of lesser importance than knowledge of the input
impedance. This is because the directive gain of an-
tennas and their radiation patterns are not very sensi-
tive to the changes in the current distribution. Radia-
tion patterns will be affected seriously only in those
directions in which radiation is small.

0.6..

0.2 / X / - \ / t

-0.42 < > t

-06.4

*) A A A n A t) 0 -r A a-U Q.2 U.4 0.6 A .8 1.0N .2 1.4
DISTANCE IN WAVELENGTHS (r/X)

Fig. 16-The amplitudes of the first, third, and fifth (m=0, 1, 2)
secondary waves as functions of the distance from the center of
the antenna.

The current distribution is given by (10) and (11).
In Section V we obtain the following approximate ex-
pression for a typical secondary wave:

30r(4m+ 3)L
12m+i(r) =Io (+ 1) (2m+ I)K [N2m+3/2(L)+ iJ2m+3/2(L)]

/ r (Lr\
* I I J2m+3/2 I )
IV I

(36)

First of all let us consider individual secondary
waves. Near r=0, the amplitude of the (2m+1)st cur-
rent wave varies nearly29 as rim+l. Fig. 16 illustrates
the way in which the amplitudes of the 1st, 3rd, and
5th (m = 0, 1, 2) vary with the distance from the origin.
If this distance is less than 4 wavelength, only the 1st
wave is important; at distances smaller than 2 wave-
length only the 1st and the 3rd3° are important.
The maximum amplitudes of secondary current

waves depend on the characteristic impedance and on
the length of the antenna. Fig. 17 shows actual second-
ary current waves for K = 1000 and 1=X/2. Of the com-
ponents in phase (solid curves) with the dominant cur-
rent Io sin ,B(I-r), only the first is important except at
r=1; of the quadrature components the first two are
sufficient. Both components are inversely proportional
to K.

In Fig. 18 the solid curve represents the amplitude
of the total current, the dash curve shows the ampli-
tude of the component in phase with Io, and the dash-

29 More accurately, the amplitude varies as (2m+1 +120/K)th
power of r.

30 The even-order waves are absent when a generator is at the
center.

+ 0

dot curve represents the amplitude of the quadrature
component. In this figure the current does not quite
vanish at the end of the antenna; this is because near
the very end of the antenna that part of the total
secondary current which is in phase with the dominant
current term lo sin f(l'-r) is determined by a very
large number of secondary-current waves and in com-
puting our curve we have taken into account only two.
This situation is closely related to very slow conver-
gence of the series representing F(L) in (18) and it is
understandable on physical grounds. The field distor-
tion in the immediate vicinity of a sharp end must be
much greater than elsewhere and more terms will be
needed to represent the field accurately. If we dissolve
both the current and the charge near the end of the
antenna into two quadrature components, then it be-
comes evident that the slope of the current curve de-
pends on the charge at the end and must be quite
large. Thus near the ends of the antenna, the current
approaches zero very abruptly.

In Fig. 19 the total current in the antenna is com-
pared with the principal current. The difference be-
tween the real parts is seen to be quite small; but the
difference between the imaginary parts is relatively
large, except near the center.

Minimum Amplitude
We shall now find the ratio Imin/Imax of the first

minimum amplitude to the first maximum amplitude
(counting from the generator). The first minimum is
relatively close to the generator where the secondary

r/I

Fig. 17-Secondary current waves for K= 1000 and 1=X/2. The
solid curves show the components in phase with the dominant
current Io sin #(l-r), and the dotted curves show thequadra-
ture components.

current wave is very small. The first maximum is far-
ther away where the secondary current is greater; but
there the principal current is large. Thus we can obtain
the desired information fairly accurately from the prin-
cipal current

- Lsin 3(l - r) + K cos r)

G(L)
-i cos,B(I- r). (37)

K
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The maximum value of this ratio will occur where
sin ,B(I-r) is nearly unity and where cos f(l-r) is,
therefore, nearly zero. Hence, the maximum value of
(37) is nearly unity. The minimum value will occur

where cos B(Il-r) is nearly unity. In the vicinity of this
point, we can find a value of j3(I-r) for which the real
part of (37) vanishes; thus, G/K is nearly the minimum
of Io(r)/Io and

,min G(L)

Imax K
(38)

There are no measurements of current distribution
in antennas with uniform characteristic impedance.
However, it is of interest to compare the measurements
on nonuniform antennas with values computed for
uniform antennas. In the case of the Copenhagen an-

tenna,9 a vertical antenna directly above the ground,
the average characteristic impedance is 540 ohms and
Leff =3.64. Replacing the ground by the image of the
antenna, we take the characteristic impedance of the
corresponding free-space antenna3" as 1080 ohms. The
ratio Imin/Imax is computed to be 0.131. As nearly as

we can read from Pedersen's picture, enlarged by
King,3 the experimental value is 0.132. The ratio cal-
culated by King is approximately 3/34=0.0882; this
is lower than the experimental value by about 33 per

cent, the difference being considerably larger than the
experimental error. We can offer no explanation of this
discrepancy. King's method is rigorous; and the ac-

H F

1.0 op-

-4/

0.2 ____.

0/ I_

0.2- .4
- - --,-0 0.1 ..................... 0.20.30.4 0.5

r/l
0.6 0.7 0.8 0.9 t.0

Fig. 18-The total current in the antenna of length 21 = X; K = 1000.
The solid curve represents the amplitude of the total current;
the dash curve represents the amplitude of the component in
phase with lo and the dash-dot curve is the amplitude of the
quadrature component.

curacy of his approximation would seem to be of the
same order of magnitude as ours.

Morrison and Smith32 have measured the current
distribution in a tower 6 feet and 6 inches square and
400 feet long. The diagonal of the cross section is 9.2

31 See Section IV for a method of computing average im-
pedances.

32 J. F. Morrison and P. H. Smith, "The shunt-excited an-

tenna," PROC. I.R.E., vol. 25, pp. 673-696; June 1937.

feet and rather arbitrarily we have chosen 2a =8 feet
as the diameter of an equivalent circular tower in our

computation of the average characteristic impedance.
Thus we have obtained K =516 ohms (for free space;

258 ohms for the actual tower above the ground). The
phase length of the antenna is L =3.7 and G(L) = 134.

1.2- Iv

1 1 ~~~~11-1 Ir)1 1
__8 I~ ___ _e_J4.iiI1, 'V _ _
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Fig 19 Curves for the total current and the principal current.

The calculated ratio is 0.26 and the measured ratio as

read from the picture32 is 17.5/75=0.233.

Transmitting Antennas Fed at an Arbitrary Point and
Receiving Antennas

Most of the foregoing formulas have been derived
specifically for free-space antennas fed at the center
(or for vertical antennas directly above ground). The
method described in Section V is applicable equally
well to other cases. Here we shall limit ours to a few
general remarks.

If two equal electromotive forces33 are applied at two
points equidistant from the center, then the current
distribution will still be given in the form (10) and (11).

33 By "equal" we mean equal amplitudes and equal phases, so
that at all times the forces act in the same direction.

AI I T I 1 S 1 I
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However, the ratio I°/Io will have to be determined
anew as a function of the distance from the center as
well as a function of K and L.

If two equal but oppositely directed electromotive
forces are applied at points equidistant from the
center, then none of the current components in (10) and
(11) will be present in the new expression for the cur-
rent. This is because all the terms in (10) and (1 1) cor-
respond to currents flowing in the same direction in the
two halves of the antenna. The new expression will
contain its own principal wave, principal antisym-
metric wave, and a set 12(r), 14(r), of antisym-
metric secondary waves.
An electromotive force V applied at some point can

always be regarded as the resultant of two pairs of
forces (V/2, V/2) and (V/2, - V/2) applied at points
equidistant from the center.
The same general method can also be used to de-

velop a theory of "end-fed" wires by considering a
single cone, instead of a double cone.

IV. ANTENNAS WITH VARIABLE
CHARACTERISTIC IMPEDANCES

The Problem
Conical antennas support spherical waves regard-

less of the magnitude of the cone angle and their theory
is relatively simple. Antennas of other shapes are
definitely more complicated. However, if their trans-
verse dimensions are small enough, they support ap-
proximately spherical waves and approximate solutions
are rather simple. We obtain these approximations;
largely on the basis of the physieal picture implied by
the theory of conical antennas rather than by a direct
mathematical analysis.

Principal Waves
Imagine a set of spheres concentric with the genera-

tor. Each small segment of the antenna may be re-
garded as a section of a cone and we may write the fol-
lowing approximate expressions for the distributed
series inductance and shunt capacitance per unit length:

,g 2 ,u 2r
L=-log---log-

V/A r p

c - ~~~~~~~~(39)2 2r
log- log-'1 p

The transmission equations for the principal waves
will be

dV
dVr- = - ictLI,
dr

dl
d- - iwCV.

dr
(40)

If p-*O, L and C become increasingly more constant
as r varies. We expect, therefore, the following asymp-
totic solutions of (40)

V(r) = V\K(r, p) (Ae-'ft + Beir),
Ae-4r- BeiOr

I1(r) = _/_
V\K(r, p)

(41)

where the characteristic impedance K(r, p) is now a
slowly varying function of the distance from the gen-
erator

1 / u 2r 2r
K(r, p) --4/flog-= 120 log (42)

p ~~~p

It is interesting to note that (41) are exactly the ap-
proximate expressions obtained by Brillouin"4 directly
from the second-order differential equations resulting
from elimination of either V or I from (40).

Average Characteristic Impedances
We shall define the average characteristic impedance

Ka as follows

1 +)
Ka = K(r, p)dr.

Io
(43)

Applying this formula to a cylindrical wire, we ob-
tain

/ 21
Ka= 120 log- - 1);

a

this is substantially equial to the characteristic imped-
ance of a cylindrical antenna as given by Pedersen.9

For a spheroidal antenna, the average characteristic
impedance is

I
Ka = 120 log-

a (45)

where "a" is the radius at the base of the antenna.
For an antenna of the shape (5) among those in

Fig. 2, the average characteristic impedance is

21
Ka = 120 log -,

a
(46)

where "a" is the, maximum radius of the antenna.
These average characteristic impedances are shown in
Fig. 20 as functions of I/a.
As Ka approaches infinity, the difference

(K(r, p)- Ka)/Ka approaches 0 and the transmission
line becomes more nearly uniform. Consequently, we
may regard the uniform line with the characteristic
impedance Ka as a first approximation to the given
nonuniform line. The second approximation will con-
tain terms depending on the reciprocal of Ka and these
terms are large enough to be of importance in engineer-
ing applications. For example, sections of transmission
lines with variable K(r, p) do not resonate at the same
frequencies as uniform sections of equal lengths. The
effect is of the same order of magnitude as the effect

34 J. C. Slater and N. H. Frank, McGraw-Hill Book Company,
New York, N. Y., (1933), pp. 147-148.
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due to radiation and may either aid or oppuse it. We
can compute this effect if we find the second approxi-
mation to the input impedance of nonuniform lines;
but there exists a somewhat simpler method which will
be employed in the following section.

Variable Capacitance and Inductance Affect Resonance
Conditions in Finite Sections of Nonuniform Trans-
mission lines

Multiplying the first equation in (40) by I* and the
conjugate of the second by V, adding the results and
integrating from 0 to 1, we have

V(l)I*(I) - V(0)I*(O) = iw [CVV* LII*]dr. (47)

If the section of the line is either electrically open or

Substituting from (50) in (48), we have

rI1 dj 2 r dV 2
L- r C- dr

w2 4ir2 fL d dr fc dr_=__ = . ~~~~~~~~~(51)
v2 X2 tLIII12dr fC| VI2dr

The foregoing formulas are exact. In order to obtain
approximate formulas, we shall assume sinusoidal
voltage-current distributions. Thus, for the first reso-
nance with one end short-circuited and the other open
(let the end at r =0 be short-circuited and the end at
r=l open), we have

7rr
I(r) =I cos

21

7rr
V(r) = V sin-

21
(52)

1400
- -

1200 _ __ 3 - - _

3
o000 _ S

800. _ -
-1

. _

1100 1000

I/a
10000

Substituting in (51), we obtain

1612 1-% 1+X
X2 1 +% -%

(53)

where
lb I irr I irrL cos-dr J ccos -dr

= - -, =f - .Lf
Ldr Cdr
JoJ

I000ooo

Fig. 20 The average characteristic impedance: (1) cylindrical
antenna, (2) spheroidal antenna, (3) antenna shape (5) shown
in Fig. 2.

Similarly, for the first resonance with both ends
open, I(r) = . sin (7rr/l) and

412 1+t 1-I
I

x2 I - t 1 +t

short-circuited at both ends, the left side of this equa-

tion vanishes and we have

CVV*dr- LII*dr.
o

(48)

This is merely an expression of the well-known fact
that at resonance the average electfricenergy and the
average magnetic energy are equal. Furthermore,
Rayleigh has shown that the first-order errors in dis-
tribution of V and I result in second-order errors in

the resonant frequencies. Thus, (48) can be used for
an approximate computation of resonant frequencies.

First of all, however, we shall obtain two special
forms of (48), especially adapted to the case when

1

LC = 2 constant. (49)

Taking this relationship into consideration, we rewrite
(40) as follows:

iv2C dV

dr

iv2L dl

co dr

I 27rr r 1 27rr
JL cos - dr JC cos - dr

t=-~~~ -
I

Ldr Crl
f'Ldr Cdr

(55)

For the first resonance with both ends short-cir-
cuited, we have

412 1 - t I +
42 1+ 1+-

(56)

It will be observed from (39) and (42) that L is
directly proportional and C inversely proportional to
K(r, p). Evidently, the approximations corresponding
to x and t on the one hand and to X and on the other
are not necessarily the same. In fact, in some extreme
cases in which either L or C become infinite at one end
too rapidly, one of the above formulas becomes en-

tirely useless. For example, in a cylindrical cavity35 for
cylindrical waves C is directly proportional and L in-
versely proportional to the distance r from the axis.

(50)
35 A section of a circular cylinder between two parallel planes.

600G +II _ ____-4-
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For the principal resonance with voltage maximum at
r =0 and 0 voltage at r = l, we have

1611 1 + x 1 - x
tY (5 7)

where x and x are given by (54). The first formula is
useless but the second gives

4
1+-

1612 wr2 41 2irt
-- = 2.35, -= 1. 53,-- = 2. 41. (58)
4X

1-
T,72

The value of 2wr/X as given by the exact theory should
be the first root of Jo(x) =0; this root is 2.40

In connection with antenna problems L becomes
infinite in the approximate equations (39) but not
rapidly enough to cause any trouble. Using these equa-
tions we obtain the following results for wires enclosed
within fictitious "reflecting" spheres, with their centers
at mid-points of the wires and with their surfaces pass-
ing through the ends of the wires.

For cylindrical wires

Si 7r
-= (o+1

irt log--
\a

120 Siir 70.74
__ ~~=

) rKa Ka
1

expressions for the input impedance of nonuniform an-
tennas from which resonant lengths can be computed
for antennas with moderate characteristic impedances.

In conical antennas L and C are distributed uni-
formly and the resonant wavelength is affected only by
the end reactance. In so far as the first power of 1/K is
concerned this effect is given by (30) which becomes

2F1
41 2) 120 Si r+60 Si 2r 97.82
-1--- =- =1-
X 7rK irK K

21 F(r) 60 Si 2r-30 Si 4ir 12.84
-=I 1 K=1-K K
)v wrK irK K

(62)

for the first and the second resonances, respectively.

Resonance in Very Thin Spheroidal Antennas
In spheroidal antennas we have to consider two

effects: The end reactance and the nonuniform distri-
bution of L and C. Ultimately, as K increases indefi-
nitely, the two effects become additive. Thus for the
first resonant wavelength, we have

2F r)
41 2

- -x . (63)
X irKa

Si 27r 27.08
-= (59)

/ 21 'Ka
27r log -1I

a

For thin spheroidal wires

Si r+0. 5 Si 2r 120(Siir+0. 5 Si 2r) 97.82
Irlog- irKa Ka

7r loga
a

Si 2ir-0.5 Si 47r 12.84
I Ka

2wx log-
a

For
section

(60)

wires with diamond-shaped longitudinal cross

Si r 70.74
x .~~ - n~2t Ka

7r log -
a

Siir-0.SSi2r 43.66
21 Ka

7r log-
a

Resonance in Very Thin Conical Antennas

We are now ready to consider the relations between
lengths of antennas of various sizes and shapes and
resonant wavelengths, under the condition that K is
very large. Subsequently, we shall obtain approximate

Hence, in thin spheroidal antennas the deviation of the
resonant length 21 from X/2 is proportional at least to
the square of 1/K. This result agrees with Abraham's
formula which, when expressed in terms of Ka, is

41 5040
-= 1 -
x (Ka + 83)2

(64)

For the second resonance we have

21 F(i) 2F(r) 25. 68
--1- + t=1 = 1--* (65)
X irKa rKa Ka

Resonance in Very Thin Cylindrical Antennas

Similarly at the first resonance in cylindrical anten-
nas, we have

2Ff-
41 2F 60Si2ir 27.08
- - x=- =1--
X 7rKa irKa Ka

(66)

At the second resonance we shall have

21 F(r) 120 Si 27r-3OSi4ir 39.92--1- +t=1--- =1- - (67)
X 7rKa 7rKa Ka

Resonance in Very Thin Antennas with 'Diamond-
Shaped" Longitudinal Cross Sections

For these antennas we have

41 60 Si 2r 27.08
--1- =-1

X rKa irKa
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21 120 Si r-120 Si 2r+30 Si 4r 30.82
-1+ - =1+ , (68)
X grKa Ka

for the first and second resonances, respectively.

Resonant Conditions Depend on the Shape of the Longi-
tudinal Cross Section of the Antenna as Well as on the
Size of the Transverse Cross Section
In its effect on the resonant length the average char-

acteristic impedance Ka represents the "average size"
of the cross section of the antenna. Since Ka depends
on the logarithm of some mean radius, the resonant
length varies rather slowly with the size of the cross
section of the antenna.
The second factor is the shape of the longitudinal

cross section. Page and Adams have supposed that a
cylindrical wire is equivalent to a somewhat fatter
and somewhat longer spheroid. On geometric grounds
this appears reasonable; but our computations do not
support the assumption. For a very thin cylindrical
wire the "equivalent spheroid" would have to be very
fat in comparison. In fact, if we let the radius of the
cylinder approach zero, then the ratio of the base ra-
dius of the equivalent spheroid to the radius of the
cylindrical wire will approach infinity.

The Input Impedance of Antennas with Variable Char-
acteristic Impedance
We have already stated that in the first approxima-

tion a nonuniform line may be regarded as a uniform
line with a characteristic impedance equal to the aver-
age characteristic impedance. The goodness of this
approximation depends on the relative deviation of
K(r, p) from Ka. Even when these deviations are small
for sections only a few wavelengths long, they will be
prohibitively large for really long sections. For ex-
ample, the average characteristic impedance of an in-
finitely long cylindrical wire is infinite; but the input

Ka[2(G2 +F2 + M2 - N2 - Ka2) sin
Ka=

In practice, however, antennas are never very long and
we can treat them as transmission lines with slightly
variable characteristic impedances. One solution for
such lines, based on Picard's method of integrating
differential equations, has been obtained by Carson.6
Adapting his solution to our problem and retaining
only the first order of correction terms, we obtain the
following expression for the input impedance:

K G sin L+i[(F-N) sin L-(Ka-M) cos L]

[(Ka+M) sin L+(F+N) cos L]-iG cos l

12400 X X |X

100 10 000100

0

z

400

200

100 1000 10000 100
WAVELENGTH
DIAMETER

Fig. 21-The input impedance of an infinitely long cylindrical
wire. Curve (a) is a plot of equation (69); curve (b) is a plot
of the more accurate equation (165).

where M and N functions are defined by

M(L) f [Ka- K(r, p)] sin 2fr dr,
z

N(L) = J [Ka- K(r, p) cos 2Br dr. (71)

The real and imaginary parts of the input impedance
are

1?, Ka G(Ka + N sin 2L - M cos 2L)
GI cos2 L + [(Ka + M) sin L + (F + N) cos LI'

2L + (MN - KaF) cos 2L + (MF - K,N)j
(72)

G2 cos2L + [(K0 + M) sin L + (F + N) cosL]2

impedance of a cylindrical wire extending to infinity
on both sides of a generator is certainly not infinite.
As a matter of fact (see footnote 20), for thin wires this
input impedance is approximately36

K(0) = 120 log 207. (69)
2a

This impedance is represented by curve a in Fig. 21.
Curve b is a plot of a more accurate equation (165).
Fig. 22 is a plot of K(0) over a wider range of radii.

36 There is a reactance in shunt with the resistance (69); this
reactance depends on the length of the segment over which the
electromotive force is applied, and has little effect on the total
impedance unless the segment is very short. Theoretically, the
terminals of the generator could be brought so close together as to
short-circuit it; but, in practice, this is not done.

For cylindrical antennas M and N functions become
M(L) = 60(log 2L - Ci 2L + C - 1 + cos 2L),
N(L) = 60(Si 2L - sin 2L). (73)
For antennas in free space, with a rhombic longitu-

dinal cross section, or for vertical antennas of triangu-
lar shape37 of base radius a, above a perfectly conduct-
ing ground, we have
M(L) = 60(C + log 2L - Ci2L)(1 - cos 2L)

- 60 Si 2L sin 2L,
N(L) = 60 Si 2L - 60(C + log 2L - Ci 2L) sin 2L,

21
Ka = 120 log-.

a
37 Inverted conical antennas.

(74)
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For spheroidal antennas we obtain

M(L) =60(C+log L-Ci 2L) +30(Si 4L-2 Si 2L) sin 2L

+30(C+log 2L-2 Ci 2L+Ci4L- 1) cos 2L,
N(L) =60 Si 2L+30(Ci 4L-log L-C-2 log 2) sin 2L

-30 Si 4L cos 2L;

M(L)=G(L)-60 log 2-30(1-log 2) cos 2L,
N(L) =F(L) -60 log 2 sin 2L. (75)

Diamond-shaped antennas can be treated more ac-
curately if we take cognizance of the fact that the first

0

z'-

01 1.0 10 100 1000 10,000 100,000
WAVE LENGTH

RADIUS

Fig. 22 The input impedance of the infinitely long cylindrical
wire. For 0.1 <X/2a_3, this curve has been computed by
numerical integration from (164); for X/2a.500, the curve has
been computed from the approximate equation (165); then,
the two curves have been freely joined together.

half of the antenna has a uniform characteristic im-
pedance and the second half, nonuniform. Thus we
may obtain the input impedance into the second half
from

Z = Ka

as functions of l/X for different values of K. In Fig. 25
we have the input resistance at resonance (Xi= 0)
in the vicinity of I=X/4. Fig. 26 shows the resonant im-
pedance in the vicinity of /=X/2. The points (except
the first) are values obtained experimentally by Feld-
man39 for X = 9 meters. The first point is the value ob-
tained by Morrison and Smith32 for the square tower.

Resonant lengths of cylindrical antennas are short
of X/2 and X by the percentages shown in Fig. 27;

Fig. 23-The input resistance of cylindrical antennas in free space.
For vertical antennas over a perfectly conducting ground divide
the ordinates and K. by 2.

curve 1 is for the principal resonance and curve 2
for the second resonance. The points above curve 1
have been taken from Englund,"6 those above curve 2
have been supplied by Feldman with one exception,
the first point comes from the paper by Morrison and
Smith.

L L l
G sin- + i (F -N) sin--(Ka - M) Cos-

2 L 2 2
-

FLa + M)sinL
L,(Ka + M) sin -- +

and, then, compute the input impedance into the first
half using (76) as its terminating impedance. The func-
tions M and N to be used in (76) are38

M'(L) = 60 log 2 + 60(C + log L - Ci 2L) cos L

- 60Si2LsinL,
N(L) =60(Si 2L - 2 Si L) cos L

- 60(C + log L + Ci 2L - 2 CiL) sin L,
21

Ka = 120 log
a

(77)

Input Impedance Curves for Cylindrical Antennas

In Figs. 23 and 24 the input resistance and the react-
ance of cylindrical antennas in free space are shown

(76)
L- L

(F + N) cos - iG cos
2 2

In this latter case, it is known that the base insulator
is responsible for about 30 micromicrofarads in shunt
with the antenna; this capacitance is more than suffi-
cient to account for the difference of 22 per cent be-
tween the measured and computed values. On the
other hand, the tower is tapered near the base and con-
sequently has less capacitance than it would have had
if it were not tapered; we feel confident that if all these
factors are taken into consideration the discrepancy
between the theory and experiment would be quite

38 In (76) G, F, M, and N are functions of L, as indicated by the
first term in the numerator, while the argument of the sines and
cosines is L/2.

39 Feldman's measurements were made for vertical wires of dif-
ferent sizes; we have doubled his results to obtain the values cor-
responding to the free-space condition.
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small. Hence, it is unnecessary to postulate the exist-
ence of a lumped series inductance of 6.8 microhenrys
and a lumped shunt capacitance of 200 micromicro-
farads at the base of the antenna in order to explain the
measurements. These values were assumed, but not ac-

counted for, by Morrison and Smith in order to bring
their measurements into agreement with formulas from
Siegel and Labus.
We now believe that the antenna theory is in such

a state that accurate results can be calculated if all
"visible" factors, such as base capacitances and an-

tenna shapes are taken into consideration. The imper-
fect conductivity of the ground does not appear to
affect the results.

II
0

z

z

V

:3I-

z

For example, for cylindrical and spheroidal antennas
M(7r/2) is equal, respectively, to -21 and 41. Hence,
when l=X/4, the input resistance of cylindrical an-

tennas is somewhat higher than 73.13 and the input
resistance of spheroidal antennas is somewhat lower
than 73.13.

I
0

UI
z

z

z

Uf)
.w,

Fig.

Fig. 24-The input reactance of cylindrical antennas in free space.
For vertical antennas over a perfectly conducting ground divide
the ordinates K. by 2.

For some unexplained reason the impedance curves

for cylindrical antennas published by King are con-

siderably in error in some regions. Thus, when
log 21/a= 10.58 so that K,= 1150, King obtains40
Rmax= 16,000 and Xmax=9000; our values are

Rmax= 5500 and Xmax= 3000. Available measurements
of Rmax support our results (Fig. 26).

The Input Impedance for I= X/4 and 1=X/2
When 1=X/4 and =X/2, we have, respectively,

K6

K8++M(r)[2

Zi=K [K6-M()] [G(ir) - iF(7r) - iN(7r) ] (78)
G2+ (F+N)2

The quantity G(wr/2) = 73.13 is the input resistance of
a half-wave antenna for K, = oo , that is, for an infi-
nitely thin wire. For any finite value of Ka, the input
resistance depends also on M(7r/2), that is, on the
shape of the longitudinal cross section of the antenna.

40 King's values have been doubled to obtain the free-space
figures.

500 600 700 800 900 1000 1100 1200

CHARACTERISTIC IMPEDANCE IN OHMS

25-The resonant impedance of cylindrical antennas as a
function of K, when I is in the vicinity of X/4.

When I=X/4 and Ka-=o, the input reactance of
cylindrical antennas is 30 Si 2wr = 42.5 and that of
spheroidal antennas is 0. For cylindrical antennas
with finite characteristic impedances the input react-
ance is somewhat higher than 42.5 and for spheroidal
antennas it is still zero. These results do not include
terms depending on 1/K6. From Abraham's expres-

sion for the resonant frequencies and from (70), we

find that the approximate value of the input re-

actance of thin spheroidal antennas, when I X/4, is
7900(Ka-41)/(Ka+83)2.

Bent Antennas

Our method of antenna analysis is applicable to bent
antennas (Fig. 28). From the theory of principal waves
guided by thin diverging conical wires21 we observe

CHARACTERISTIC IMPEDANCE IN OHMS

Fig. 26-The resonant impedance of cylindrical antennas is a
function of K, when I is in the vicinity of X/2.

that the capacitance between two elements at A and
A' depends only on the distance between them and on

their radii. For equal radii, we shall have then

d(x)

K(x, a)= 120 log
a

(79)

For unequal radii, a is the geometric mean of the actual
radii.

From (79) we can obtain the average characteristic im-
pedance; then from (71) we compute Mand N functions
which are needed to correct transmission equations

70

69

68 _ - _
67 -

66

65 I,

64

63
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61A

1941 511

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DE SANTA MARIA. Downloaded on October 24,2020 at 14:01:58 UTC from IEEE Xplore.  Restrictions apply. 



Proceedings of the I.R.E.

of the principal waves for the nonuniform distri-
bution of the inductance and capacitance. The function
G(L) is obtained from (25): First we compute the
radiated power on the assumption that a =0 and that
the current distribution is sinusoidal with current
nodes at the open ends of the antenna; then, we divide
this power by 2- of the square of the current amplitude.
This calculation can be carried out by either of two
methods: (1) The Poynting flux method and (2) the
produced-electromotive-force method. Only the second
of these methods can be used for calculating F(L);
moreover, in this calculation a must be assumed not

300 400 500 600 700 800 1000 1500 2000
CHARACTERISTIC IMPEDANCE IN OHMS

Fig. 27-The resonant length of cylindrical antennas in free space.
Curve 1 is for the principal resonance. Curve 2 is for the
second resonance. The ordinates represent the required shorten-
ing in per cent.

merely infinitely small but also varying with x in such
a way that d(x)/a remains constant.
When these functions have been computed, the input

impedance is obtained from (70).

Loop Antennas

If an antenna is bent into a complete loop and the
ends are joined together, the procedure for calculating
G and F functions is the same as that outlined above
except that the sinusoidal current distribution must
be chosen to have an antinode instead of a node at the
far end of the antenna. Naturally, M and N functions
are not affected by the conditions at the far end.

Current Distribution

In order to find the current distribution in nonuni-
form antennas we should calculate the principal cur-

rent distribution from Carson's equations,6 assuming
that the transmission line is terminated by the output
radiation impedance as given in this paper, and super-

impose on it the secondary current distribution. The
latter can be obtained from (11) and (36).
Knowledge of current distribution is needed largely

in computing radiation patterns, and these are affected
by the ground conditions to a much greater extent
than by the changes in the current distribution. It is

doubtful, therefore, that the labor expended in calcu-
lating current distributions, light as it is, would be
commensurate with the practical value of the results.
However, the current distribution can be measured
and, hence, used for checking the theory.

V. ANTENNAS WITH UNIFORM CHARACTERISTIC
IMPEDANCES: MATHEMATICAL ANALYSIS

A set of equations for transverse magnetic spheri-
cal waves and its general discussion may be found
in previous papers.2-"4 This set will now be developed
to suit the needs of our particular problem. In the
first place we shall assume that o/Oaq=0. It may

appear that this assumption will restrict the analysis
to coaxial cones; in reality, however, the solutions of
the restricted equations can be used for the more gen-

eral case of two conical wires inclined to each other.
Thus, if O/Oq$ =0 our fundamental equations become

rEo = _,

aA
rH,o =rX,=

i&)er2E, = n(n + 1)A,

1 aA
V = i--

iwe ay
(80)

where n is a constant depending upon the boundary
conditions at the surface of the antenna and the "flux
function" A is

A = vXrin[Jn,t/2(gr) -iNn+1/2(0r)]T(O)
A- =-/#rJn+1/2(#r)T(0). (81)

The function A+ defines the outward-bound progres-

sive wave while A- the standing wave finite at the

Fi-g. 28-A bent antenna.

origin r =0. The function V(r, 0) is the "potential" de-
fined as the line integral of Eo along any path beginning
on some fixed radius 0=0' and contained entirely in

the co-ordinate sphere of radius r. The function T(0)
is a solution of Legendre's equation

T(0) = pPn(- cos 0) + qP.(cos 0), if n # 0,
0

= plogcot if n = 0.

2
(82)

41 W. L. Barrow, L. W. Chu, and J. J. Jansen, "Biconical elec-
tromagnetic horns," PROC. I.R.E., vol. 27, pp. 769-779; December,
1939.
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11Schelkunff: Theory of A-rtennas of Arbitrary Size and Shape

The function P,(x) is so defined that

Pn(1) = 1. (83)

If n is not an integer, P, (x) has a logarithmic singular-
ity at x = -1. If n is an integer, Pn(-x) = (-)nP,(x)
and (82) is not the most general solution of Legendre's
equation. There is a second solution Qn(x) which is
singular at two points x = ± 1.
The boundary conditions are: the electric intensity

E, must vanish at the surface of the antenna and the
field must be finite. If the conical conductors are of
finite length, the entire space must be divided by co-
ordinate spheres into regions: (1) free from conductors,
(2) containing only one conductor, and (3) containing
two conductors.

In the region free from conductors n must necessarily
be an integer because for nonintegral values of n
Legendre's equation possesses no solutions finite for
all values of 0. The function Qn(cos 0) being singular
at 0=0, X is also out of the picture. Thus in such re-
gions the complete solution is a series of functions
Pn(cos 0) corresponding to different integral values of
n.

In the region containing only one cone with its axis
along 0=0, the coefficient q in (82) must vanish be-
cause P7(cos 0) is infinite where 0=7=. Thus (82) be-
comes

T(O) = pPn(- cos 0). (84)
The singularity of this function at 0=0 is, of course,
excluded by the conductor. If ,6 is the angle made by
the generators of the conical conductor with the axis,
then Er will vanish on the conductor if

P,,(- cos 41) = 0. (85)

This is the equation for the constant n.
In the region containing two conductors, one with

its axis along 0 =0 and the other along 0 = r, we must
have T(I6I) = T(7r-,62) =0 and therefore

pPn,(- cos VI,) + qPn(cos V/1) = 0,
pPn(cOs if2) + qPn(- COS 42) = 0. (86)

Eliminating p and q, we have the equation for n,

P,,(- cos 1/',) PnCS4(o ) (87)
Pn(COS ),2) P-,,(- COS +t2)

If the cone angles /i and V12 are small their cosines are
nearly equal to unity, P'(cos if)-Pn(cos /2) 1 and
(87) becomes approximately

Pn(- cOs 4'1)Pn(- COS 1/2) = 1. (88)

If the cones are equal +1-=/12= /1 then

Pn-(-cos VI6) = ± Pn(cos V,f), and p = F q. (89)

For small values of I, this becomes

If the two cones are inclined toward each other and
if their angles i, and 2 are so small that the "proximity
effect" is negligible, we can express the total field as the
resultant of two fields, associated with the individual
cones, and the function that must vanish on the
boundaries becomes

T(0,,02) = pPn(- cos 01) + qP,(- cos 02), (91)

where 0, and 02 are the angles made by typical radius
with the axes of the conductors. If the angle between
the axes is ¢, we have approximately

PPn(- cos VI,) + qP.(- cos t) = 0,
pPn,(- cos t) + qPn(- COS 2) = 0.

The equation for n will then become

P-n(- cos /1)Pn(- COS V/2) = [Pn(- COS ) ]2.
For equal cones, we have

Pn(- cos Af) = ± P.(- cos t), p = F q.

(92)

(93)

(94)
Inasmuch as with reference to a single co-ordinate sys-
tem T(01,02) is a function of two spherical co-ordinates
0 and 0 the field, if wanted, must be computed from
the general equations21 and not from (80).
The boundary condition Er = 0 on the surface of the

antenna will also be satisfied (see (80)) if Er vanishes
everywhere; this happens when n=0. In this case the
nontrivial solution is singular for two values of 0 so
that the wave can exist only in the presence of two
conductors excluding the corresponding radii from the
field. This is the so-called "principal" wave and its
properties have already been discussed in detail.21

In the region containing two conductors, the trans-
verse voltage Vn(r) between the conductors, corre-
sponding to any transmission mode except the princi-
pal, vanishes,

V(r) = 0. (95)
This is true because V(r) is the difference between the
values of V(r, 0) on the two conductors and these
values, being proportional to T(0), vanish with T(0);
and it is only for the principal wave that T(0) does not
vanish on the conductors. Hence, the total transverse
voltage V(r) between two conductors depends entirely
on the principal wave.

Let I'F(r) be the electric current in the upper cone
of the double cone and I"/1(r) the corresponding cur-
rent in the lower cone (Fig. 5). Assuming that the
upward direction is positive, we have

cA
In'(r) = 27rr sin ifH (r, iA) =-2r sin i1-,

IA
I,,"(r) = 27rr sin 41Ho(r, ?-x p = 27r sin 6p- .(96)dS0 T-

(go) For all values of n>O the function V\xNN+±(x) is
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infinite at x =0; therefore, the proper expression for A
is A-(see (81)) and

In'(r)- 27r/ "Jqrn112(3r) sin .4-T(b),

In"(r) = 27rV/3rJn+l12(o3r) sin TT- r - t'). (97)

Since for n>0, the function V/xJn+2(x) vanishes at
x = 0, we have

In'(0) = IT"'(0) = 0. (98)

At the apex the electric current is determined solely
by the principal wave.
Thus, we have justified equations (10) and the

equivalent circuit for double cones of equal length that
follows from these equations. It was shown there that
the first approximation for the output impedance
(19) can be obtained in the form (26) by a method
quite different from the present and yielding the results
in their simplest form. On the other hand, the present
method permits the use of successive approximations
and is quite general. For this reason, we are justified
in developing it still further.

In the case of a double cone (Fig. 5) different trans-
mission modes are determined by the roots of (89) or,
for small cone angles Vt, by (90). The latter equation is
a very good approximation even if 4V is as large as 0.1
since cos i/ 1 - 1-,2 will differ from unity by less than
1 per cent and P t()=-1. From the theory of Legendre's
functions, we have

sinnir (-)-F(n+a+±) . 0
Pn(-cos0) E 2 log sin-

W a 0 P(n-a+l)L 2

sin2a

+iP(n+a) +iJ(-n+2- 1)- 2lit(a)] --,a (99)

where
P'(x + 1)

(x) = ( i+ 1) , t'(- x- 1) =(x) + 7r cot 7rx. (100)

For small values of l the term corresponding to a =0
is dominant and we have approximately

2 F6
Pn,(- cos 0) -sin nir log- + t'(n) -()'ir L 2

where K is the characteristic impedance to the princi-
pal waves.2"

Similarly, the equation

P,,(- C3os Vl) = - 1 (104)
becomes

nc r 2 K

os2 r=-120+A()(n (105)

As the characteristic impedance K increases indefi-
nitely, the roots of (103) approach

120
n = 2m + I +--, m-=0, 1, 2, * *

K

Likewise, the roots of (105) approach

120
n=2m+- M 1,2,*

K

(106)

(107)

The roots of the characteristic equation (85) for a
single cone approach

60
n =m+ m=K0,1,21*v .

K
(108)

When n is a root of (102) then by virtue of (89) the
corresponding field function T(6) is proportional to

L2m+1(0) = 2 [P2m+l+A (COS 0)-P2m±i+a (-COS 06 ], (109)

where

120
A K-

K-
(110)

The derivatives of the L functions at 0= lt and 0==r- l

are approximately

dL(4t) dL(7r - lI) sin 7rA A 120

dVI d-ir;t lit' Kf (111)

Hence, the electric currents in the antenna, associated
with these waves are nearly inversely proportional to
the characteristic impedance and they flow in the same
direction at points equidistant from 0.
When n is a root of (104), the field function T(6) is

proportional to

L2m(6) = 2 [P2m+A(cOs 0) + P2m+A(- cOs 0)]. (112)

In this case
+ cos nir.

Hence, the equation

Pa(- cos V/) = 1

becomes
n7r 2 - 2

tan- = --log-+ -6(0)-96(n)

22fK= - 1[I+ V (0) - (n)]X

(101)

(102)

(103)

dL2m(Wt) dL(ir - lI) sin -rA 120
dlt dit 7rf K#I

(113)

and the electric currents at points equidistant from 0
are in opposite directions

For small values of A, we have approximately

P+A(cos 0) = P.(cos 6)

+2A[Pn(cos 0) log cos 2+Sn j
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Pnfl±A(-cos 6) = (-) P (cos 0)

+A np(-)"P(cos 0) log sin +S, ]n

n ()a(n±a+a)! / 1 1

~ia=l!a.!(n-at)! Kn+axn+a-i

a-l a!a!(n-a)! \n+a n+a-1
1 \

+ ) cos2a (114)
n+1/ 2

Also, A- ÷0, we have

Ln(O) -> Pn(cos 6). (115)

Thus, the characteristic functions for the region con-
taining two cones approach the characteristic func-
tions for free space except that free space cannot sup-
port the principal wave.

This property may be used for obtaining the second
approximation to the solution of the antenna problem.
We shall write general solutions appropriate to the
free space, and to the "antenna region" within the
sphere of radius I (Fig. 5). The two solutions must
satisfy certain continuity conditions at the boundary
sphere and it is in this matching operation that (115)
is useful.

In the antenna region we can write

27ricojer2Er= a,
_V,rf 1(1r) Ln()

I(r) = 2irr sin AIH

a,NOrJn+1/2(gr)_ d

=- E ( +1/,- I gflsin - Ln()(1 16)
n n(n+1)V\3lJn+1/2(f3l) 4

where I(r) is the total current in the upper cone, asso-
ciated with all waves except the principal. We shall
call this current complementary. The summation in
(116) is extended over the roots of (89), excepting
n=0.

In the free space we write

2Xrier2E,
a/O [Jk+1/2(0r)-iNk+112(0r)]= E )bk - Pk(COS 0). (117)

k==1 N1(1 [Jk+1/2(01) - iNk+1/2(31)
At r=l, C must be continuous

00

E anLn(6) = E bkPk(cos 0). (118)
n k=1

But as K oo and 4f'->0, we have (115) and, therefore,
in the limit the coefficients an and bk must be cor-
respondingly equal.
The coefficients bk can be easily determined for the

limiting case K =-. In the first place I(r)-O as
K°o. This can be shown by substituting from (111)
into (116) and obtaining

120 anV/3rJn+1i2(0r)
K n(n + 1)Vl\/fB Jn2(/l)2 (1)

The only term which would not approach zero is the
term corresponding to m =0 in (107). This term is
entirely absent, however, in the symmetric case of
Fig. 5. In the case of cones of unequal length this term
would be present and we would exclude it from E(r)
and consider it separately as the "principal antisym-
metric current wave." In either case, the conclusion is
that as K-- oo, the current distribution in the antenna
tends to become strictly sinusoidal.

If the current distribution is known, the field can be
determined by the retarded-potential method. For a
sinusoidal distribution of amplitude 1o, with current
nodes at the ends of the antenna, we have

C = 27rr sin OIIO
= - ilo(e-igr cOs 01 - le- i#rl - le ifr2), (120)

where r1 and r2 are distances from the upper and the
lower ends of the antenna. At great distances from the
antenna this becomes

C = ilo [cos (A1 cos 0) - cos 13l]e-i#r.
From Maxwell's equations we have

1 3C
2'7ri,3er2Er= . = il31 sin (131 cos 0)e-ir.

sinG d6a

(121)

(122)

On the other hand, at great distances from the an-
tenna (117) becomes

00 /2
2lricoer2Er= E ,1/ i k lbk(0i) 1/2 [Jk+1/2(01)

k=i 7

-iNk±1/2(01) ] 1Pk(COS )e w'r. (123)

Hence, in order to find bk we only have to expand
sin (31 cos 0) into a series of Legendre's functions. This
expansion is known to be

sin (131 cos 0)

E0 (-)m(4m+3) J2.+3/2(0l)P2m+1(cOs 0). (124)

Substituting in (122) and comparing the result with
(123) we obtain

b2m+1a- i(2M+ ')7rLJ2m+3/2(L) [J2m+3/2(L) -iN2m+ /2(L)
2L, l

b2,aO , L=1=31
x (125)

Letting in (119) a,,= b20+±, we obtain the asymptotic
value for the complementary current as given by (16)
and (18).
The above matching of radial electric fields in the
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two regions can be regarded as the second step in a
sequence of successive approximations. If we were to
compute E0, we would discover that it is discontinuous
at the boundary sphere r = 1. By adding a proper ex-
pression to the external field, we can make E0 continu-
ous again and after matching Er for the second time
we shall have a more accurate expression for the com-
plementary current. In all these higher approximations
we no longer can make the coefficients an and bk equal
but have to expand the functions to be matched in
series of Legendre's functions, Ln(G) or P.(cos 0) as the
case may be.
These functions are orthogonal42 and, therefore, the

coefficients of expansions are expressed by definite
integrals.

VI. THE 'INDUCED-ELECTRoMoTIv-F1oRCE " METHOD
OF COMPUTING RADIATION AND THE

RADIATION PARADOX

The "induced-electromotive-force" method43 of com-
puting radiation consists in obtaining the work done
(and thus the energy contributed to the field) in driv-
ing given electric currents against the electric forces
produced by them. This method furnishes not only the
power lost by the source in radiation but also the
average reactive power, that is, the average inter-
change of energy between the field and the generator.

For a linear current filament situated along the z
axis and extended from z =-l to -z= 1, the complex
power 'I is

q= - E=(z)I*(z)dz, (126)

where E. is the electric intensity parallel to the fila-
ment at the surface of the latter. If the filament con-
sists of two perfectly conducting wires, one extending
from z= -l to z= -s and the other from z=s to z=l,
and if the "generator" between z= -s and z=s con-
sists of some means for transferring an electric charge
from one wire to the other, then (126) becomes

(127)4' = - +fi E,(z)I*(z)dz

since E3 =0 on the surface of a perfect conductor.
Furthermore, if we assume that in the short interval

(-s, s) occupied by the source of energy the current
I(z) is equal to a constant I, (127) becomes

= - *JE(z)dz. (128)

Since "action equals reaction," we have

V + f E(z)dz = 0, (129)

42 It should be noted, however, that Lo(O) is not a member of the
orthogonal set [Ln(O)] but dLo(o)/d(o) is a member of the or-
thogonal set [dL(a)1/d9].

43 For a brief history of this method see S. A. ScheIkunoff, "A
general radiation formula," PROC. I.R.E., vol. 27, pp. 660-666;
October, 1939.

where V is the "applied" electromotive force, that is,
the force transferring the charge from one wire to the
other, while the integral is the counterelectromotive
force of the field. Hence, (128) may be rewritten as

AP = IVI*. (130)

In order to find 4, it is necessary to compute the
current I flowing through the generator in response to
the electromotive force V-a major problem in itself.
The approximate method of computing 4 is based

on the following facts: (1) In thin wires the current
I(z) is nearly sinusoidal, (2) the field and, in particular,
E3(z) can be calculated from 1(z) by the retarded-po-
tential method, and (3) the error in the field becomes
smaller as the error in 1(z) becomes smaller. This
method has already been applied successfully to find
the approximate power radiated from thin cylindrical
antennas.

In the case of conical antennas we have

(131)4' -'~fJ Er(r)I*(r)dr,
2 -l

for the average work done in order to maintain electric
current in the lateral conical surface. To this we must
add another integral if the top and bottom surfaces of
the cone are.large enough to make a noticeable contri-
bution to T. It is from this integral that we have com-
puted F(L) as given by (26). For thin antennas G(L)
is independent of the shape of the antennas and can be
obtained equally well from (126). In order to carry out
the necessary computations, the following expressions
for the field produced by an infinitely thin filament
supporting sinusoidal current have been used

1(z) = I sin f(l-z),
= Isin,B(l+z),

z > 0;
z < 0;

e W e-i,#rl e-i#rg\
Ez=30iI 2 - cos 3- -,

r r r2 /

pEp-301I ([(z l)e + l)e
rl ~~~r2

2ze-i,sr
-- cos fI
r -

2irpI1T = il(e-Or cos ,B-2-ir-1eir) (132)

In these equations r1, r, and r2 are, respectively, the
distances from the lower end, the center, and the upper
end of the antenna; p is the distance from the z axis.

In view of (23) and (25), G(L) and F(L) can be ob-
tained correctly in this manner.

In (126) the quantity -E3(z) is the applied electro-
motive force per unit length and, therefore, -E3(z)/I(z)
is the radiation impedance per unit length. If the an-
tenna is perfectly conducting, this impedance is 0
along the entire antenna except in the region from
z =-s to z= s, occupied by the source of energy. The
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conclusion is not startling, since after all energy does
come out of its source.
What we have just said does not vitiate our previous

assertion to the effect that an approximate value of '
can be obtained from an approximate value of I(z).
It is true that if 1(z) is taken to be a sinusoidal function
of z, then E, is different from zero and it would appear
that there exists a nonvanishing distributed radiation
impedance; but this means merely that the power
given out by the "point generator" is approximately
equal to the power given out by a certain continuous
distribution of generators along the entire antenna. If
the sinusoidal function for I(z) is replaced by a more
accurate function, then E, will become smaller along
the greatest part of the antenna but it will become
larger in the interval from z= -s to z=s. What the
discussion in connection with (7) tells us is that if K
is large, the more accurate expression for T will not
differ very much from the one obtained on the basis
of sinusoidal distribution of current.
On the other hand, it is perfectly obvious that in the

case of an antenna fed from a point generator the dis-
tributed radiation resistance -E,(z)/I(z), obtained
from sinusoidal distribution, should not possess any
significance since it is bound to approach zero as 1(z)
is made to approach its exact value.
Feldman has communicated to the author that by

taking the real part of -E,(z)/I(z), computed on the
assumption that 1(z) is sinuscidal, and regarding this
real part as a distributed series resistance added by
radiation to the ohmic resistance, he computed the
current and charge distributions along a long wire.
Then he measured the shape of the minima of the
current and of the charge. The measured values agreed
well with the computed values.
Now, there is no question that there exists a dis-

tribution of series impedance that will represent cor-
rectly the effect of radiation on the total current and
the total charge in the antenna (Section VII). What is
surprising is that this resistance has been obtained
fairly accurately as the real part of -E,(z)/I(z). After
all, if this were a correct method of finding the equiva-
lent distributed resistance, we should expect that its
exact value will be found when the exact value of 1(z)
is used. And yet if the exact value of I(z) is used, then
-Ez(z)/I(z) must be equal to zero because this is pre-
cisely the boundary condition from which the exact
current must be obtained!

VII. CURRENT-CHARGE EQUATIONS
The customary form of transmission equations for

a line with distributed series resistance R, series in-
ductance L, and shunt capacitance C is

dV dl
(R + iwL)I, - iC-iCV. (133)

Since the electric charge per unit length is q= CV, the
above equations can be written also in the current-

charge form
dq__d- -(RC + iwLC)I,
dx

dl
= - UN)q.

dx
(134)

provided, however, that C is independent of x. The
second equation of this set expresses the law of con-
servation of electric charge.

For a conical antenna (for any antenna for that
matter) the second equation is satisfied automatically

dIl
- = - icoq.
dr

Differentiating this with respect to r, we have
dq i d2I

dr ow dr2

(135)

(136)

It has been shown in Section V that the total current
1(r) is the sum of the principal current Io(r) and an
infinite number of complementary currents corre-
sponding to characteristic values of n

I(r) = Io(r) + E In(r). (137)

Each component of the current satisfies the following
equation2"

d2In n(n + -1)]2r co

dr2 2 In = , -=-=- (138)

Substituting the second derivative from this equation
into (136), we obtain

dq ix ix n(n + 1)
dr - 2 I 2 n (or)2

(139)

We have seen that as K increases indefinitely, all the
complementary current waves approach zero; conse-
quently the current-charge equations for the antenna
become substantially the equations of a uniform trans-
mission line. If I(r) is known, we can determine RC
and LC so that (139) would become identical with
(134). Assuming that C is independent of r and is equal
to the capacitance for the principal wave44

r 1
C=- = ' (140)

Vt vK
log cot-

2

and comparing (134) and (139) we obtain

n(n + 1)
E ( )- In(r)
n (or) I

R+iwL=if3K-i/3K ~I(r) (141)

Taking 1(r) and In(r) from the equations contained in
the main section of the paper we can replace (141) by
the following approximate expression:

44We must bear in mind that nothing can be deduced from
(139) concerning the nature of C. In this respect the total-current-
total-charge equations are unlike the principal-current-principal-
charge equations.
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m

60ir E (4m + 3) [J2m+3/2(01f) - i2V2m+3/2(01) ]V/rlIJ2m+3/2(fir)
R+icL=ifK+ L-O

In order to obtain an expression for R when I-X/4,
we need only one term in the numerator and we may

retain only the principal term in the denominator.
Thus we shall have

Lsin fir
360 - cos ,r

I(fr)2 cos fr

+ remainder. (142)

Besides introducing a distributed resistance into the
current-charge equations of the antenna, radiation
modifies the distributed inductance. Thus for B1= wr/2
we find approximately (retaining only the first term in
the summation)

(143)
sin fir

Or
- cos fr

cL = fiK + 360fi
(,Br)l cos ,Br

(148)

0:
iLi

LI

:2

14 _. _ _-

6 __ _ C

4 __ __ -_

2

1~~~~~~~~~~~~ 6

DISTANCE IN METERS

Fig. 29-Distribution of radiation resistance in the current-charge
transmission equations. The calculated curve is for 21 = X/2; the
experimental points, obtained from Feldman, are for 21_ 2.5X.

In the neighborhood of the generator this becomes
approximately

120 480
I= ; (144)

and, near the ends,
5760 59

R r4(5-r) -r)
The approximate expression for R obtained from

-Ez(z)/I(z), on the assumption that I (z)is sinusoidal,
is

1201
R_= (146)

(12 r2)

This expression agrees quite well with ours (Fig. 29).
However, there are no theoretical objections to (143)
as there are to (146).

If the antenna is so short that ,B is substantially
smaller than unity and if we neglect those components
of the total current which depend on K, then approxi-

mately 160w212

R = -r2 (147)

The total radiated power calculated from (147) is
found to agree with the well-known expression for the
powe,r radiated by a short doublet.

The first term of this expression represents the series
reactance per unit length of an infinitely long conical
antenna while the second term is the end effect. Near
the center of the antenna (148) becomes

coL = fiK + 1200. (149)

In the neighborhood of the ends of the antenna, the
added reactance depends appreciably on other terms
in (141); there the series converges slowly and even the
approximation for the reactive part used by us in (142)
is not good.

It is worth observing that if the series inductance is
obtained from the imaginary part of -E5(z)/I(z) as-

suming 1(z) to be sinusoidal, the result

120r
cL = -rtan Or

/2 - r
(150)

is very disappointing and may be regarded as an addi-
tional reminder that the comparative success with the
resistance must have been purely coincidental.
Thus from a theory in which antennas are regarded

as multiple transmission lines, we have obtained two
restricted theories. In the first of these radiation ap-

pears as a terminal impedance and in the second it
appears as a distributed series impedance. There is no
inconsistency between these two views and both are

valid provided they are suitably qualified. Thus in the
second theory, we think in terms of electric charge and
electric current and must not assume the usual trans-
mission-line relations between the voltage and the
charge. In the first theory, on the other hand, all the
usual transmission-line relations hold but the voltage,
the charge, and the current in the transmission line
representing the antenna correspond respectively to
the voltage, the "principal" charge, and the principal
current in the antenna.

VIII. WAVE PROPAGATION ALONG PERFECTLY
CONDUCTING PARALLEL WIRES

Consider a pair of parallel perfectly conducting wires

(Fig. 30), energized by any number of "point gener-
ators." The electromagnetic field on or outside the
wires can be expressed in the following general form

F2 [sinP:(Zr)+-- IG I(r)r2[sini(l- r)+ Cosf3(l - r)+-
K ~~~~~10
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div A
E--io yuA-grad V, H = curl A, V=- , (151)

where A is the retarded magnetic vector potential and
V the retarded electric scalar potential.

t !

V(z)

Fig.30lAdiagamsowin two pertly(z)
Fig. 30-A diagram showinlg two perfectlyconducting parallel wires.

wavelength and with the length of the wires and if the
wires are energized in "push-pull" so that the currents
in the wires are equal and oppositely directed, then
111-H2 iS substantially proportional to the electric
current at the corresponding point and (155) turns
into the usual engineering equations governing trans-
mission of waves on parallel wires.
The current in two thin infinitely long perfectly con-

ducting parallel wires, energized in push-pull can be
expressed in the following form45

if3aVo r sinh yrK,(- ia/y2+ 32)eYzdy
I(z) = - I

28- JI (c) ez2 + I2 [Ko(-isV2 + 2 - K2(-iV + 32)]

If the wires are so energized that the electric con-

duction current is strictly longitudinal, and if the wires
are thin, the current is always at least approximately
longitudinal; the only nonvanishing component of A
is the one parallel to the wires

Ax = Ay =O, A z = IT.

In this case we obtain from (151)

Ez = --iwl- ,) V = -

(152)

1 an__-E (153)

Since the wires are perfectly conducting, E, must
vanish on the surface of each wire except at points of
application of electromotive forces. Thus, we have

dVi
-dV - iw1t111,
dz

dV2
- = -iCoaT2,

dz

dIll
d_= - icoeV,
dz

012
_= - icWEV2,

dz
(154)

where the subscripts designate the values of the cor-

responding functions on the wires. Subtracting, we

have
d(V1 -V2) _ _ 112),

dz

,d(IT1 -HT)
d(1=- oe(V, - V2). (155)

dz

Thus, the voltage across parallel perfectly conducting
wires and the difference of vector potentials satisfy the
equations of a uniform nondissipative transmission line.
The phase velocity is the velocity of light.
On the other hand, the electric current 1(z) does not

satisfy the transmission-line equations. The vector po-

tential is determined by the complete current dis-
tribution

I r I(zj)e-ifl1
IT(z) = - dz1, (156)

47rJ r

where r is the distance between the points z and z1 and
the integration is extended over both wires. If the dis-
tance between the wires is small compared with the

where Vo=an electromotive force distributed in push-
pull in two short segments of length 2ir, one on

each wire,
a= the radius of the wires,
s=the interaxial separation between the wires,
z= the distance from the mid-points of the "gen-

erators," and
C= the imaginary axis in the 'y-plane indented
around -y= ± i3 (Fig. 31(A)).

(A)

V-PLANE

(c.) I

(c)

V-PLANE

'pj

(B)

Fig. 31-Contours of integration.

The phase of \7y2+f2 at y= +ioo is r/2. The only
approximation involved in (157) is that the radius of
the wires be small compared with their interaxial sep-
aration; consequently, the "proximity effect" is not
included in (157).

If z is positive, the contour (C) can be deformed into
(C') as shown in Fig. 31(B). The integration around
the point y =-i: which happens to be a pole as well
as a branch point of the integrand, yields the following
term

Vo sin fr X7 5

Io(z) - e-z, K = -- log-, z > 0. (158)

2K fir ir a

This "principal" current wave is unattenuated and

is substantially independent of T if 27rr/X is small

45 In order to obtain this equation as well as equation (163) we
express the "pulse function, " representing the applied electromotive
intensity -Es, as a contour integral; then, we obtain the magnetic
intensity 114, as the quotient of -E2 and the radial impedance; and
finally we compute the current from 1(z) = 2raHO(a, z).

(157)

:H
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compared with unity. The remainder

1(z) 1(z) -IO(z) (159)

is a purely local wave in the neighborhood of the
generator and it represents the effect of radiation as
well as the local reactance depending on r.

m

Fig. 32-The equivalent circuit for two parallel wires,
open at both ends and energized in push-pull.

Radiation introduces a resistance in parallel with the
applied electromotive force. If the interaxial separation
is small compared with the wavelength, this resistance
is approximately

K2X2
R = - .(160)

60r2S2

If the wires are of finite length, the expression for the

distribution is affected by radiation, the latter also will
produce a continuously distributed effect on the volt-
age. The latter is, however, a second-order effect; be-
sides, it is concentrated largely in the immediate vi-
cinity of the ends, even though mathematically speak-
ing it extends over the entire length.

IX. ON THE IMPEDANCE OF AN INFINITELY
LONG PERFECTLY CONDUCTING

CYLINDRICAL WIRE
It is readily shown46 that the current in an infinitely

long perfectly conducting cylindrical wire of radius a is

i3aVof sinh 'yT K1(- ia y2+fl2)
I(S)= J22-2----Ydy,(I163)

77T (C) 'Y-\ 2+2KKo(-\l 2+02
where Vo is the applied electromotive force uniformly
distributed over a section of length r and C is the
contour shown in Fig. 31(A).
Deforming (C) into (C'), we can show that the real

component of the input admittance is substantially
independent of r and for X = 0 is

. , . . .~~~~~21 43 Sd
K(0) 77r J o (p2 - 02) [Jo2(aV\32 - 2) + N 2(aV/32 -42)]

current becomes vastly more complex. The result,
however, will consist of two parts, one of which will
represent the principal current wave and the other
local waves in the neighborhood of the discontinuities,
that is, ends of the wires or generators. It is fortunate,
however, that the impedances introduced by radiation
at the points of discontinuity can be calculated with
good engineering accuracy without setting up exact
equations but using in the proper manner the field
produced by the principal current wave. The accuracy
of such expressions increases with increasing charac-
teristic impedance K.

Let a pair of parallel wires of radius a, whose inter-
axial separation is s, be open at both ends and be ener-
gized in "push-pull"; then, in free space, the radiation
can be represented by parallel combinationsof conduct-
ance G and susceptance B=coC as shown in Fig. 32,
where

607r2(s2- a2)
G = - -,

X2
60(s - a)

vK2

12Or(s - a)
B-c WC = - (161)

K2X

We omit the details of calculation.
If the wires are imperfect conductors, the first equa-

tion of the set (155) becomes

d(V - V2)
)1(1 - 112)-Z j1r - Z212, (162)

dz

where Z1 and Z2 are the surface impedances of the
wires. The added terms affect the voltage across the
pair continuously. The principal effect is due to dissi-
pation of energy in the wires; but since the current

After some tedious transformations we have ob-
tained the following approximate expression (when
,q=1207r) for thin wires

120M
K(0) =

log 2 72- (log 2)2
1 +

2MI 4Mf2
x

M =log + log 2 - C,
27ra (165)

where C=0.577 is Euler's constant. As a->0,
(165) approaches

K(0) = 120 log 2 120 log--207. (166)

X. AN APPROXIMATION OF A DISSIPATIVE
TRANSMISSION LINE BY A NONDISSIPATIVE
LINE WITH AN EFFECTIVE LOAD AT THE

LAST CURRENT NODE OR ANTINODE
The input impedance of a dissipative line of length

1, electrically open at the far end, is

Zi = K coth (a + i3)l, (167)

where a+ii3 is the propagation constant. If al is small
compared with unity, then we have approximately

cos f1 + ial sin 1Sl
al cos ,BI + i sin 31

(168)

For a nondissipative line with a terminal impedance
Zt at the far end, we have

46 See footnote 45.

(164)
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K2 axl
Z = -- = - = -RI.

zt K
2(169)

Multiplying the numerator and the denominator of
(168) by K/al and comparing with (169) we obtain

K K2
Zt =- (170)

alI 'RI
where R is the resistance per unit length of the dissi-
pative line.
The same input impedance will be obtained, of

course, if the nondissipative line is electrically open
and at the point - wavelength from the open end
there is an impedance Z, in series with the line, de-
fined by

(171)

It is to be expected, therefore, that the electric cur-
rents in these three different cases will be approxi-
mately the same in the neighborhood of the generator.
If the line is about 2 wavelength long, the minimum
current will occur close to the generator and its meas-
ured value will not enable us to decide which, if any,
of the three above-discussed distributions of loss
happens to be the true distribution. At the current
antinode, the electric currents in the three cases differ
by larger absolute amounts; these differences are, how-
ever, small compared with the total current.

High-Frequency Radio Transmission Conditions,
August, 1941, with Predictions for November, 1941*

NATIONAL BUREAU OF STANDARDS, WASHINGTON, D. C.

Note: In order to make these monthly reports of maximum
service, changes are made from time to time. The Bureau welcomes
suggestions for improvement of both form and substance. Address
any communications to the National Bureau of Standards, Wash-
ington, D. C.

T HE radio transmission data herein are based on
observations at Washington, D. C., of long-dis-
tance reception and of the ionosphere. Fig. 1

gives the August average values of maximum usable
frequencies, for undisturbed days, for radio transmis-
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36a0 2200 miles (3500km) e - 930miles (1500km)
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d= 1250miles(20OOkm) h=For Vertical Reflection
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TIME OF DAY AT PLACE OF REFLECTION

Fig. 1-Maximum usable frequencies for dependable radio trans-
mission via the regular layers, average for undisturbed days,
for August, 1941. The values shown were considerably exceeded
during frequent irregular periods by reflections from clouds of
sporadic E layer. (See Table II.) These curves and those of Fig.
2 also give skip distances, since the maximum usable frequency
for a given distance is the frequency for which that distance is
the skip distance.

sion by way of the regular layers of the ionosphere.
The regular-layer maximum usable frequencies were
determined by the F layer at night and by the E, Fi,

40

36

"I,

2

z

0

z
w

-J
COam

cn

32

20S 4 2 7 l0

16 -FF - h__2s'\S

__ -_.PREDICTED FOR NOV. 1941_____

12 2 4 ~6 8 10 12 2 4 6 8 10 12
TIME OF DAY AT PLACE OF REFLECTION

Fig. 2-Predicted maximum usable frequencies for dependable
radio transmission via the regular layers average for undis-
turbed days, for November, 1941. For information on use in
practical radio transmission problems, see the pamphlets "Radio
transmission and the ionosphere" and "Distance ranges of radio
waves," obtainable from The National Bureau of Standards,
Washington, D. C., on request.

and F2 layers during the day. Fig. 2 gives the expected
values of the maximum usable frequencies for radio
transmission by way of the regular layers, average for

* Decimal classification: RI 13.61. Original manuscript received
by the Institute, September 12, 1941.
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Zt cos (1 + iK sin 01
Zi= K

K cos (1 + iZt sin (1

(i 2200miles(3500km) e- 930miles(1500km)
b * 1850 miles (3000km) f - 620miles (1000 km)
c a 1550 miles (2500km) g * 310miles (500km)
d * 1250 miles (2000km) h a For Vertical Reflection
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