
VLSI implementation of OFDM modem
Aseem Pandey, Shyam Ratan Agrawalla & Shrikant Manivannan

Abstract

OFDM is a multi-carrier system where data bits are encoded to multiple sub-carriers and sent simultaneously in time. The
result is an optimum usage of bandwidth. A set of orthogonal sub-carriers together forms an OFDM symbol. To avoid ISI
due to multi-path, successive OFDM symbols are separated by guard band. This makes the OFDM system resistant to
multi-path effects.
Although OFDM in theory has been in existence for a long time, recent developments in DSP and VLSI technologies have
made it a feasible option. Many wired and wireless standards like DVB-T, DAB, xDSL and 802.11a have adopted OFDM.
This paper first lists various approaches to implementing an OFDM system. It then describes the VLSI implementation of
OFDM in details. Specifically the 802.11a OFDM system has been considered in this paper. However, the same
considerations would be helpful in implementing any OFDM system in VLSI.

1 Introduction
OFDM is a multi-carrier system where data bits are encoded to multiple sub-carriers. Unlike single carrier systems, all the
frequencies are sent simultaneously in time. OFDM offers several advantages over single carrier system like better multi-
path effect immunity, simpler channel equalization and relaxed timing acquisition constraints. But it is more susceptible to
local frequency offset and radio front-end non-linearities.
The frequencies used in OFDM system are orthogonal. Neighboring frequencies with overlapping spectrum can therefore
be used. This property is shown in the figure where f1, f2 and f3 orthogonal. This results in efficient usage of BW. The
OFDM is therefore able to provide higher data rate for the same BW.

OFDM is fast gaining popularity in broadband standards and high-speed wireless LAN.

f1 f2 f3

2 OFDM transceiver

Each sub-carrier in an OFDM system is modulated in amplitude and phase by the data bits. Depending on the kind of
modulation technique used one or more bits are used to modulate each sub-carrier. Modulation techniques typically used
are BPSK, QPSK, 16QAM, 64QAM etc. The process of combining different sub-carriers to form a composite time-domain
signal is achieved using Fast Fourier transform. Different coding schemes like block coding, convolutional coding or both
are used to achieve better performance in low SNR conditions. Interleaving is done which involves assigning adjacent
data bits to non-adjacent bits to avoid burst errors under highly selective fading.

Block diagram of an OFDM transceiver is shown below.

Figure 1: Block diagram of the 802.11a OFDM transceiver

Receiver

Transmitter

Data
to

MAC

Puncturin
g

Interleave
r

Scramblin
g

IFFT

Wave
Shaping

Digital I/Q
modulator

Upconvert
er and PA

LNA &
Downconve

rt

DAC

AGC ADC

Correlator &
Symbol timing

Frequency
correction

Viterbi
decoder

Mapper

FFT Demapper Deinterleave
r &

Depuncturer

Descrambl
er

Digital I/Q
demodulato

r

Cyclic
extension

Data
from
MAC

Channel
Equalizer

Coding

3 Different implementation techniques
Figure 1 shows an OFDM transciever. Following choices are available for implementing an OFDM system.
?? DSP based implementation
?? DSP based implementation with hardware accelerators
??VLSI implementation
The pros and cons of each approach are explained in the following sections.

3.1 DSP based implementation

High performance Digital Signal Processors are widely available in the market today. The compute intensive and time
critical functions that were traditionally implemented in hardware are nowadays being implemented in software running on
these processors. Implementing the entire OFDM transceiver in software on DSPs is thus an option to be considered for
some applications.

It has the following advantages:

?? Reduced development time and quick prototyping. Quick time to market.
?? Flexibility. It can quickly adapt to changing or different standards as it needs only a software change.
?? Ideal for multi-mode Basebands where multiple standards are supported by the same device

DSP based implementation has the following disadvantages:
?? Not very optimum in terms of area and power consumption
?? High MIPS requirement.

The approximate MIPS requirement for different blocks in OFDM is given below

Module MIPS
Viterbi decoder 4000

FFT 500
NCO 120

Interleaver 150
Channel compensation 100

Scrambler & others 50

The total MIPS requirement is 4500+. Such high CPU power is not available even with the fastest DSPs in the market
today. One way out is parallel processing with multiple DSPs as shown in figure Figure 2

Figure 2: DSP solution

DSP1

MAC I/F RADIO
I/F

DSP2

3.2 DSP with hardware accelerators

To overcome the MIPS limitation and yet retain the flexibility of software implementation, some blocks can be
implemented in H/W. Figure 3 shows an implementation which can reduce the MIPS requirement by around 4000 MIPS.

Figure 3: DSP + H/W accelerators

3.3 VLSI implementation

Figure 4: VLSI Implementation

In the approach shown in Figure 4 the entire functionality is implemented in hardware.
Following are the advantages of this approach:

?? Lower gate count compared to DSP+RAM+ROM, hence lower cost
?? Low power consumption

Due to the advantages mentioned above a VLSI based approach was considered for implementation of an 802.11a
Baseband. Following sections describe the VLSI based implementation in details.

DSP

MAC I/F RADIO
I/F

FFT
Butterfly

Viterbi
Decoder

MAC I/F RADIO
I/F

Baseband
ASIC

4 Design Methodology
The design approach for the OFDM modem is slightly different than a typical ASIC flow. Early in the development cycle,
different communication and signal processing algorithms are evaluated for their performance under different conditions
like noise, multipath channel and radio non-linearity. Since most of these algorithms are coded in “C” or tools like Matlab,
it is important to have a verification mechanism which ensures that the hardware implementation (RTL) is same as the “C”
implementation of the algorithm. The flow is shown in the Figure 5.

Figure 5: Design flow for Baseband development

5 Architecture definition

Following points need to be considered in the architecture definition phase.

5.1 Specifications of the OFDM transceiver

?? Data rates to be supported
?? Range and multipath tolerance
?? Indoor/Outdoor applications
?? Multi-mode: 802.11a only or 802.11a+HiperLAN/2

Inputs from
Algorithm

team

Architecture &
Algorithms
definition

Floating point
simulation

Fixed point
simulation

Hardware
design

RTL
implementation

HDL
Simulations

Comparison
of results

Synthesis &
FPGA

Prototyping

Backend

ASIC tape out

5.2 Design trade-offs

?? Area – Smaller the die size lesser the chip cost
?? Power – Low power crucial for battery operated mobile devices
?? Ease of implementation – Easy to debug and maintain
?? Customizability – Should be customizable to future standards with variations in OFDM parameters

6 Algorithm survey & simulation

The simulation at algorithmic level is to determine performance of algorithms for various non-linearities and imperfections.
The algorithms are tweaked and fine tuned to get the required performance. The following algorithms/parameters are
verified

?? Channel estimation and compensation for different channel models (Rayleigh, Rician, JTC, Two ray) for different

delay spreads
?? Correlator performance for different delay spreads and different SNR (AWGN model)
?? Frequency estimation algorithm for different SNR and frequency offsets
?? Compensation for Phase noise and error in Frequency offset estimation
?? System tolerance for I/Q phase and amplitude imbalance
?? FFT simulation to determine the optimum fixed-point widths
?? Wave shaping filter to get the desired spectrum mask
?? Viterbi BER performance for different SNR and traceback length
?? Determine clipping levels for efficient PA use
?? Effect of ADC/DAC width on the EVM and optimum ADC/DAC width
?? Receive AGC

6.1 Fixed point simulation

One of the decisions to be taken early in the design cycle is the format or representation of data. Floating point
implementation results in higher hardware costs and additional circuits related with normalizing of numbers. Floating point
representation is useful when dealing with data of different ranges. But this however is not true as the Baseband circuits
have a fair idea of the range of values they will work on. So a fixed-point representation will be more efficient. Further in
fixed point a choice can be made between signed and 2's complement representation.

The width of representation need not be constant throughout the Baseband and it depends on the accuracy needed at
different points in transmit or receive path. A small change in the number of bits in the representation could result in a
significant change in the size of arithmetic circuits especially multipliers.

Module Width Gate count
12 6K Complex Multiplier
16 10K
12 24 K (excluding RAM) FFT (Radix-4 with 3 complex

multipliers) 16 36 K (excluding RAM)

Shown below is the loss of SNR because of decrease in the width of representation.

Module Width SNR dB (Signal to
Quantization noise ratio)

8 48 ADC
12 72

Simulations for different bit-widths tell us which is the optimum bit-width that maintains the required level of accuracy.
Significant area and power savings could be made if accurate estimation of fixed-point widths is made. Simulations are
performed to determine the required precision.

6.2 Simulation setup

The algorithms could be simulated in a variety of tools/languages like SPW, MATLAB, “C” or a mix of these.
SPW has an exhaustive floating point and fixed-point library. SPW also provides feature to plug-in RTL modules and do a
co-simulation of SPW system and Verilog. This helps in verifying the RTL implementation of algorithms against the
SPW/C implementation.

7 Hardware design

7.1 Interface definition

Baseband interfaces with two external modules: MAC and Radio.

7.1.1 Interface to MAC

Baseband should support the following for MAC
?? Should support transfer of data at different rates
?? Transmit and receive control
?? RSSI/CCA indication
?? Register programming for power and frequency control

Following options are available for MAC interface:
?? Serial data interface – Clock provided along with data. Clock speed changes for different data rates
?? Varying data width, single speed clock – The number of data lines vary according to the data rate. The clock remains

same for all rates.
?? Single clock, Parallel data with ready indication – Clock speed and data width is same for all data rates. Ready signal

used to indicate valid data
?? Interfaces like SPI/Micro-wire/JTAG could be used for register programming

7.1.2 Radio

Two kinds of radio interfaces are described below

?? I/Q interface

On the transmit side, the complex Baseband signal is sent to the radio unit that first does a Quadrature modulation
followed by up-conversion at 5 GHz. On the receive side, following the down-conversion to IF, Quadrature demodulation
is done and complex I/Q signal is sent to Baseband. Shown below is the interface.

Figure 6: I/Q interface to Baseband

RX
I/Q

TX
I/Q

Baseband

D
A

A
D

Quadrature
modulation

&
demodulati

on

Up-

conversion/
PA

LNA/Down-
Conversion

-10 +10 -IF +IF -5GHz +5 GHz

?? IF interface

The Baseband does the Quadrature modulation and demodulation digitally.

Figure 7: IF interface to Baseband

I/Q interface IF interface

I/Q Phase/Amplitude imbalance is an issue as the
modulation/demodulation is done in analog

No phase imbalance as Quadrature components are
produced digitally

Two ADC/DAC channels required for I/Q Single ADC/DAC channel required
Sampling frequency is lower (>BW) Higher sampling frequency needed (> 2BW)

DC-offset introduced by I/Q ADC has to be compensated DC-offset introduced at the receiver ADC is not a problem
as there is a mixing stage inside

7.2 Clocking strategy

The 802.11a supports different data rates from 6 Mbps to 54 Mbps. The clock scheme chosen for the Baseband should
be able to support all rates and also result in low power consumption. We know from our Basic ASIC design guidelines
that most circuits should run at the lowest clock.

Two options are shown below:

?? Above scheme requires different clock sources or a very high clock rate from which all these clocks could be

generated.
?? The modules must work for the highest frequency of 54 MHz.

??

RX IF

TX IF

 -IF +IF -5GHz +5 GHz

Baseband

D
A

A
D

Up-

conversion/
PA

LNA/Down-
Conversion

Clk: 6, 9, 12, 18, 24, 36, 48 and 54 MHz

Scrambler Encoder Interleaver
Data bit

from MAC
Data to
Mapper

Clk 20 MHz

Scrambler Encoder Interleaver

Parallel
Data

stream
Data bits
to Mapper

Data Enable

?? Shown in the previous figure is a simpler clocking scheme with only one clock speed for all data rates
?? Varying duty cycles for different data rates is provided by the data enable signal
?? All the circuits in the transmit and receive chain work on parallel data (4 bits)
?? Overhead is the Data enable logic in all the modules

7.3 Design of crucial blocks

7.3.1 FFT

Requirement: 64 point FFT computation in 4 us as the 802.11a OFDM symbol including the guard interval is 4 us wide.

Figure 8: 64 point Radix-4 FF T data flow diagram

7.3.1.1 Different architectures

?? Radix-4 Single-Path delay commutator
?? Radix-4 Multi-Path delay commutator
?? Radix-4 Single-Path delay feedback
?? Pipelined or non-pipelined

7.3.1.2 FFT storage

?? Using single RAM – As only one RAM is available, large delays occur because of read and write cycles and
therefore faster clock required to meet FFT time requirement of 4 us

?? Using multiple storage, Data load/store happen in parallel, FFT Radix-4 utilization is improved and FFT
computation time is less

Figure 9: Different storage schemes for FFT

Input
buffer

16 Radix-
4 stage 1
operation

s

16 Radix-
4 stage 2
operation

s

16 Radix-
4 stage 3
operation

s

Output
buffer

Radix-4
element

Intermediate
results

Input

Buffer

Output
Buffer

Twiddle ROM

Radix-4
element

Intermediate
results

In-Out
Buffer

Twiddle ROM

7.3.1.3 Twiddle factor complex multiplication

Comparison shown for two options

CORDIC 4 Real Multipliers
High latency or Pipeline delay Single clock multiplication can be achieved

No twiddle ROM required ROM required to store the twiddle factors

7.3.1.4 Butterfly construction

Since multipliers are the biggest block in Radix-4 butterfly, designer may choose to have 1, 2 or 3 complex multiplier
instances based on clock, timing and latency requirements. Shown below are both the kinds

Figure 10: Butterfly operation

Figure 11: Lower latency with three parallel multipliers

Figure 12: Single complex multiplier, higher latency (or higher clock required for same latency)

W N
0

W N
q

WN
2q

WN
3q

-j
-1

-1
1

-1

j

j

-1

X[1]

X[2]

X[3]

X[4]

Y[1]

Y[2]

Y[3]

Y[4]

W N
0

W N
q

WN
2q

WN
3q

-j
-1

-1
1

-1

j

j

-1

X[1]

X[2]

X[3]

X[4]

Y[1]

Y[2]

Y[3]

Y[4]

 X(1)
 X(2)
 X(3)
 X(4)

1 1 1 1
1 -j -1 j
1 -1 1 -1
1 j -1 - j

X
 Y(1)
 Y(2)
 Y(3)
 Y(4)

=

7.3.2 Viterbi

The ½ , length 7, convolutionally encoded stream is decoded using a Viterbi decoder.

Figure 13: Viterbi Construction

7.3.2.1 BMU

Branch metrics computation unit calculates the hamming distances for the incoming pair of codes from four possible
codes

7.3.2.2 ACS

Add, compare and select unit is used to update the path metric for all the 64 states and select the predecessor. For each
of the 64 states, it adds current path metric and branch metric for both the predecessor states and selects the lower of the
two as the new path metric and the predecessor information is passed on to the SMU unit.
The width of the Path metric register and the ACS adders and subtractor will change based on whether a soft-decision or
a hard-decision viterbi is ued. It also depends on the maximum metrics accumulated by metrics registers before a
normalization is done.

7.3.2.3 SMU

Survivor metrics unit can be implemented by register-exchange or traceback memory method.

Register-exchange Traceback memory

Data bits for all possible paths in the trellis are stored in Flip-flops Decision bits are stored in traceback RAM
Low latency = Traceback length High latency = 4 x Traceback length

High gate count =~ 60 K for traceback length of 64 Low gate count =~25K + 256x64 RAM required
High power consumption because of operation of all Flip-flops Low power consumption

7.3.3 NCO

NCO (Numerically controlled oscillator) is used for frequency offset correction. NCO generates sine and cosine waves that
are mixed with the incoming Baseband signal to correct the frequency error. Various design parameters to be decided in
NCO are given below

Figure 14: NCO

?? Width of phase-accumulator. Will decide on the accuracy or “ppm” of generated waveform
?? Width of Sine and cosine outputs. Decides Quantization error. But this also decides the size of ROM used to keep

the sine and cosine tables
?? By using the fact the cos (?) = sin (90 - ?), a single LUT can be used to generate both sine and cosine values

BMU

ACS

SMU

RxBitsLow

RxBitsHigh
Decoded Bit

Phase per
clock

Phase
Accumulator

Sine
ROM

Cosine
ROM

?? The need for Sine/Cosine ROM can be eliminated by using a CORDIC rotator (if the pipeline delay that the CORDIC
introduces can be tolerated).

7.3.4 Arctan

The tan-1 circuit is used during the estimation of the frequency error caused by local frequency PPM errors. This could be
implemented as a simple LUT, which contains the Arctan values for different angles or it can be implemented by using a
CORDIC circuit in vectoring mode. CORDIC is an abbreviation for Coordinate rotation digital computer. It involves
performing the following equations iteratively.

Let us say the complex vector is x0 + jy0 and our objective is to find z = tan-1(y0/x0), it can be achieved by doing the
following.

xi+1 = xi – yi*di*2
-i

yi+1 = yi + xi*di*2
-i

zi+1 = zi – di*tan-1(2-i).
Where

di = +1 if yi < 0, -1 otherwise

i is the iteration number and decides the accuracy of the result. As can be seen, the CORDIC circuit is simple to construct
and involves only shifts, additions and subtractions.

Using LUT CORDIC
Huge RAM needed for high accuracy Low gate count

Low latency High latency because of iterative method

CORDIC circuit is preferred as it results in a low gate count implementation.

7.4 Optimize usage of hardware resources by reusing different blocks

Hardware resources can be reused considering the fact that 802.11a system is a half-duplex system. The following blocks
are re-used
?? FFT/IFFT
?? Interleaver/De-interleaver
?? Scrambler/Descrambler
?? Intermediate data buffers

Since Adders and Multipliers are costly resources, special attention should be given to reuse them. An example shown
below where an Adder/Multiplier pool is created and different blocks are connected to this.

Figure 15: Sharing of H/W resources

Adder/Multiplier
resource pool

FFT

Channel
equalizer

Frequency
offset

correction

Correlator

7.5 Optimize the widely used circuits

Identify the blocks that are used at several places (several instances of the same unit) and optimize them. Optimization
can be done for power and area. Some of the circuits that can be optimized are:

7.5.1 Multipliers
They are the most widely used circuits. Synthesis tools usually provide highly optimized circuits for multipliers and adders.
In case optimized multipliers are not available, multipliers could be designed using different techniques like booth- (Non)
recoded Wallace.

7.5.2 ACS unit
There are 64 instantiations of ACS unit in the Viterbi decoder. Optimization of ACS unit results in significant savings.
Custom cell design (using foundry information) for adders and comparators could be considered.

8 Debug support
??To enable debugging the hardware a serial port or a parallel port interface could be provided
?? The port could be used to control the core, issue transmit and receive commands, analyzing the receive data for

errors, monitoring BER etc
?? Test mode support can be provided in the core to facilitate selective testing of the modules inside

9 RTL Simulations
RTL simulations are done to achieve the following objectives:

?? Functional verification for all transmit and receive Baseband functions for different data rates is done
?? Necessary models are written to introduce noise and channel effects. Verilog PLI interface can be used to plug-in “C”

models if they are available
?? It is verified that different algorithmic blocks are implemented correctly in RTL, the same set of vectors used in

algorithm simulations are applied to the RTL system and the outputs are compared. If simulations for algorithms are
done in a tool like SPW, then this can be easily be done by importing the RTL blocks in SPW system

Figure 16: Simulation setup in SPW environment Figure 17: Simulation setup in Verilog environment

After algorithm verification, the verilog RTL code is typically tested on a prototype board using FPGAs before
fabricating the ASIC. The details of these activities are outside the scope of this paper.

SPW

OFDM
system in

SPW/C

RTL

modules

RTL team Algorithms
team

Simulation
results

Verilog

simulator

OFDM
system in C

RTL

modules

RTL team Algorithms
team

PLI interface

Simulation
results

10 Conclusion

In this paper, design approach for an OFDM Modem was presented. Different algorithms implemented in OFDM modem
are identified.
Implementation alternatives for different components of OFDM modem were discussed. It was found during the algorithm
design that many blocks need complex multipliers and adders and therefore special attention needs to be given to
optimize these circuits and maximize reusability. The need for verifying the algorithms in the same environment or the
same set of test vectors with which the Fixed-point “C” implementation of algorithms are run is highlighted.

11 Acknowledgements

The authors wish to gratefully acknowledge the guidance and direction provided by Madhav Rao throughout the design of
the OFDM Modem. We thank Vivek Wandile for his suggestions during the project and especially during definition of the
development plan and methodology. Many thanks to Uday Ramachandran, Dilip Thakur and A. Vasudevan for providing
us the required resources.
We thank Binny John and Uma Vaithy for getting us all the needed literature, especially the IEEE papers.

12 References

1. ISO/IEC 8802-11 ANSI/IEEE Std 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) specifications, IEEE, 20th August 1999

2. IEEE Std 802.11a-1999(Supplement to IEEE Std 802.11-1999), Part 11: Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) specifications, IEEE, September 1999

3. Digital signal Processing, J.G.Proakis, D.G Manolakis, Third Edition

4. Digital communications, Simon Haykin, John Wiley and sons

5. Very Fast Fourier Transform Algorithms Hardware for Implementation, Alvin M. Despain, IEEE transactions on

computers, Vol. c-28 No 5, May 1979

6. Robust Frequency and Timing Synchronization for OFDM, Timothy M. Schmidl and Donald C. Cox, IEEE

TRANSACTIONS ON COMMUNICATIONS, VOL. 45, NO. 12, DECEMBER 1997

7. A New Approach for Evaluating Clipping Distortion in Multicarrier Systems, Ahmad R.S. Bahai, Manoneet Singh,

Andrea J. Goldsmith, and Burton R. Saltzberg, IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
VOL. 20, NO. 5, MAY 2002

8. "OFDM for multimedia wireless communications" by Van Nee, Richard and Ramjee Prasad

9. Performance Analysis of Viterbi Decoding for 64-DAPSK and 64-QAM Modulated OFDM Signals, Thomas May,

Hermann Rohling, and Volker Engels, IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 46, NO. 2,
FEBRUARY 1998

10. An Equalization Technique for Orthogonal Frequency-Division Multiplexing Systems in Time-Variant Multipath

Channels, Won Gi Jeon, Kyung Hi Chang and Yong Soo Cho, IEEE TRANSACTIONS ON COMMUNICATIONS,
VOL. 47, NO. 1, JANUARY 1999

11. Optimum Nyquist Windowing for Improved OFDM Receivers, Stefan H. Muller-Weinfurtner and Johannes B. Huber,

Proc. of the IEEE Global Telecommunications Conference GLOBECOM 2000, San Francisco, CA, USA, pp. 711-
715, Nov. 2000

13 Acronyms and definitions

AGC Automatic gain control
AWGN Additive white gaussian noise
BER Bit error rate
BPSK Binary phase shift keying
BW Bandwidth
EVM Error vector magnitude

FFT Fast Fourier transform
IF Intermediate frequency
ISI Inter symbol interference
PA Power amplifier
OFDM Orthogonal frequency division multiplexing
QPSK Quadrature phase shift keying
QAM Quadrature amplitude modulation
SPW Signal processing Work-system from Cadence
SNR Signal to noise ratio

14 About the Authors
Aseem Pandey is a senior engineer with the VLSI and Systems design division. He is currently working in a group that
develops physical layers of different wireless standards.

Shyam Ratan Agrawalla is a senior engineer with the VLSI and Systems design division. He is working on the 802.11a
OFDM modem development.

Shrikant Manivannan is the technical lead for the 802.11a OFDM modem program at Wipro technologies. His focus since
joining Wipro has been the design of Baseband for different Wireless Standards

