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Abstract 
 
OFDM is a multi-carrier system where data bits are encoded to multiple sub-carriers and sent simultaneously in time.  The 
result is an optimum usage of bandwidth. A set of orthogonal sub-carriers together forms an OFDM symbol. To avoid ISI 
due to multi-path, successive OFDM symbols are separated by guard band. This makes the OFDM system resistant to 
multi-path effects.  
Although OFDM in theory has been in existence for a long time, recent developments in DSP and VLSI technologies have 
made it a feasible option. Many wired and wireless standards like DVB-T, DAB, xDSL and 802.11a have adopted OFDM. 
This paper first lists various approaches to implementing an OFDM system. It then describes the VLSI implementation of 
OFDM in details. Specifically the 802.11a OFDM system has been considered in this paper. However, the same 
considerations would be helpful in implementing any OFDM system in VLSI. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1 Introduction 
OFDM is a multi-carrier system where data bits are encoded to multiple sub-carriers. Unlike single carrier systems, all the 
frequencies are sent simultaneously in time. OFDM offers several advantages over single carrier system like better multi-
path effect immunity, simpler channel equalization and relaxed timing acquisition constraints. But it is more susceptible to 
local frequency offset and radio front-end non-linearities. 
The frequencies used in OFDM system are orthogonal. Neighboring frequencies with overlapping spectrum can therefore 
be used. This property is shown in the figure where f1, f2 and f3 orthogonal. This results in efficient usage of BW. The 
OFDM is therefore able to provide higher data rate for the same BW. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
OFDM is fast gaining popularity in broadband standards and high-speed wireless LAN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f1 f2 f3 



2 OFDM transceiver 
 
Each sub-carrier in an OFDM system is modulated in amplitude and phase by the data bits. Depending on the kind of 
modulation technique used one or more bits are used to modulate each sub-carrier. Modulation techniques typically used 
are BPSK, QPSK, 16QAM, 64QAM etc. The process of combining different sub-carriers to form a composite time-domain 
signal is achieved using Fast Fourier transform. Different coding schemes like block coding, convolutional coding or both 
are used to achieve better performance in low SNR conditions. Interleaving is done which involves assigning adjacent 
data bits to non-adjacent bits to avoid burst errors under highly selective fading.  
 
Block diagram of an OFDM transceiver is shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Block diagram of the 802.11a OFDM transceiver 
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3 Different implementation techniques 
Figure 1 shows an OFDM transciever. Following choices are available for implementing an OFDM system. 
?? DSP based implementation 
?? DSP based implementation with hardware accelerators 
??VLSI implementation 
The pros and cons of each approach are explained in the following sections. 
 
3.1 DSP based implementation 
 
High performance Digital Signal Processors are widely available in the market today. The compute intensive and time 
critical functions that were traditionally implemented in hardware are nowadays being implemented in software running on 
these processors.  Implementing the entire OFDM transceiver in software on DSPs is thus an option to be considered for 
some applications.  
 
It has the following advantages: 
 
?? Reduced development time and quick prototyping. Quick time to market. 
?? Flexibility. It can quickly adapt to changing or different standards as it needs only a software change. 
?? Ideal for multi-mode Basebands where multiple standards are supported by the same device 
 
DSP based implementation has the following disadvantages: 
?? Not very optimum in terms of area and power consumption 
?? High MIPS requirement.  
 
 
 
The approximate MIPS requirement for different blocks in OFDM is given below  
 

Module MIPS 
Viterbi decoder 4000 

FFT 500 
NCO 120 

Interleaver 150 
Channel compensation 100 

Scrambler & others 50 
 
The total MIPS requirement is 4500+. Such high CPU power is not available even with the fastest DSPs in the market 
today. One way out is parallel processing with multiple DSPs as shown in figure Figure 2 
 
 
 
 
 
 
 
 
 
 

Figure 2: DSP solution 
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3.2 DSP with hardware accelerators  
 
To overcome the MIPS limitation and yet retain the flexibility of software implementation, some blocks can be 
implemented in H/W. Figure 3 shows an implementation which can reduce the MIPS requirement by around 4000 MIPS. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: DSP + H/W accelerators 

 
3.3 VLSI implementation 
 
 
 
 
 

Figure 4: VLSI Implementation 

 
In the approach shown in Figure 4 the entire functionality is implemented in hardware. 
Following are the advantages of this approach: 
 

?? Lower gate count compared to DSP+RAM+ROM, hence lower cost 
?? Low power consumption 
 

 
Due to the advantages mentioned above a VLSI based approach was considered for implementation of an 802.11a 
Baseband. Following sections describe the VLSI based implementation in details. 
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4 Design Methodology 
The design approach for the OFDM modem is slightly different than a typical ASIC flow. Early in the development cycle, 
different communication and signal processing algorithms are evaluated for their performance under different conditions 
like noise, multipath channel and radio non-linearity. Since most of these algorithms are coded in “C” or tools like Matlab, 
it is important to have a verification mechanism which ensures that the hardware implementation (RTL) is same as the “C” 
implementation of the algorithm. The flow is shown in the Figure 5.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Design flow for Baseband development 

5 Architecture definition 
 
Following points need to be considered in the architecture definition phase. 
 

5.1 Specifications of the OFDM transceiver 
 
?? Data rates to be supported 
?? Range and multipath tolerance 
?? Indoor/Outdoor applications 
?? Multi-mode: 802.11a only or 802.11a+HiperLAN/2 
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5.2 Design trade-offs 
 
?? Area – Smaller the die size lesser the chip cost 
?? Power – Low power crucial for battery operated mobile devices 
?? Ease of implementation – Easy to debug and maintain 
?? Customizability – Should be customizable to future standards with variations in OFDM parameters 
 
 

6 Algorithm survey & simulation 
 
The simulation at algorithmic level is to determine performance of algorithms for various non-linearities and imperfections.  
The algorithms are tweaked and fine tuned to get the required performance. The following algorithms/parameters are 
verified 
 
?? Channel estimation and compensation for different channel models (Rayleigh, Rician, JTC, Two ray) for different 

delay spreads 
?? Correlator performance for different delay spreads and different SNR (AWGN model) 
?? Frequency estimation algorithm for different SNR and frequency offsets 
?? Compensation for Phase noise and error in Frequency offset estimation 
?? System tolerance for I/Q phase and amplitude imbalance 
?? FFT simulation to determine the optimum fixed-point widths 
?? Wave shaping filter to get the desired spectrum mask 
?? Viterbi BER performance for different SNR and traceback length 
?? Determine clipping levels for efficient PA use 
?? Effect of ADC/DAC width on the EVM and optimum ADC/DAC width 
?? Receive AGC 
 
 
6.1 Fixed point simulation 
 
One of the decisions to be taken early in the design cycle is the format or representation of data. Floating point 
implementation results in higher hardware costs and additional circuits related with normalizing of numbers. Floating point 
representation is useful when dealing with data of different ranges. But this however is not true as the Baseband circuits 
have a fair idea of the range of values they will work on. So a fixed-point representation will be more efficient. Further in 
fixed point a choice can be made between signed and 2's complement representation. 
 
The width of representation need not be constant throughout the Baseband and it depends on the accuracy needed at 
different points in transmit or receive path. A small change in the number of bits in the representation could result in a 
significant change in the size of arithmetic circuits especially multipliers.  
 
 
 

Module Width Gate count 
12 6K Complex Multiplier 
16 10K 
12 24 K (excluding RAM) FFT (Radix-4 with 3 complex 

multipliers) 16 36 K (excluding RAM) 
 
Shown below is the loss of SNR because of decrease in the width of representation. 

Module Width SNR dB (Signal to 
Quantization noise ratio) 

8 48 ADC 
12 72 

 
Simulations for different bit-widths tell us which is the optimum bit-width that maintains the required level of accuracy. 
Significant area and power savings could be made if accurate estimation of fixed-point widths is made. Simulations are 
performed to determine the required precision. 
 
6.2 Simulation setup 
 
The algorithms could be simulated in a variety of tools/languages like SPW, MATLAB, “C” or a mix of these.   
SPW has an exhaustive floating point and fixed-point library. SPW also provides feature to plug-in RTL modules and do a 
co-simulation of SPW system and Verilog. This helps in verifying the RTL implementation of algorithms against the 
SPW/C implementation.  



7 Hardware design 
 
7.1 Interface definition 
 
Baseband interfaces with two external modules: MAC and Radio. 
 

7.1.1 Interface to MAC 
 
Baseband should support the following for MAC 
?? Should support transfer of data at different rates 
?? Transmit and receive control 
?? RSSI/CCA indication 
?? Register programming for power and frequency control 
 
Following options are available for MAC interface: 
?? Serial data interface – Clock provided along with data. Clock speed changes for different data rates 
?? Varying data width, single speed clock – The number of data lines vary according to the data rate. The clock remains 

same for all rates.  
?? Single clock, Parallel data with ready indication – Clock speed and data width is same for all data rates. Ready signal 

used to indicate valid data 
?? Interfaces like SPI/Micro-wire/JTAG could be used for register programming 
 
 

7.1.2 Radio 
 
Two kinds of radio interfaces are described below  
 
?? I/Q interface 
 
On the transmit side, the complex Baseband signal is sent to the radio unit that first does a Quadrature modulation 
followed by up-conversion at 5 GHz. On the receive side, following the down-conversion to IF, Quadrature demodulation 
is done and complex I/Q signal is sent to Baseband. Shown below  is the interface. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: I/Q interface to Baseband 
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?? IF interface 
 
The Baseband does the Quadrature modulation and demodulation digitally. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: IF interface to Baseband 

 
I/Q interface IF interface 

I/Q Phase/Amplitude imbalance is an issue as the 
modulation/demodulation is done in analog 

No phase imbalance as Quadrature components are 
produced digitally 

Two ADC/DAC channels required for I/Q Single ADC/DAC channel required 
Sampling frequency is lower (>BW) Higher sampling frequency needed (> 2BW) 

DC-offset introduced by I/Q ADC has to be compensated DC-offset introduced at the receiver ADC is not a problem 
as there is a mixing stage inside 

 

7.2 Clocking strategy 
 
The 802.11a supports different data rates from 6 Mbps to 54 Mbps. The clock scheme chosen for the Baseband should 
be able to support all rates and also result in low power consumption. We know from our Basic ASIC design guidelines 
that most circuits should run at the lowest clock. 
 
Two options are shown below: 
 
 
 
 
 
 

 

 

 
 
?? Above scheme requires different clock sources or a very high clock rate from which all these clocks could be 

generated.  
?? The modules must work for the highest frequency of 54 MHz. 
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?? Shown in the previous figure is a simpler clocking scheme with only one clock speed for all data rates 
?? Varying duty cycles for different data rates is provided by the data enable signal 
?? All the circuits in the transmit and receive chain work on parallel data (4 bits) 
?? Overhead is the Data enable logic in all the modules 
 
 
 
7.3 Design of crucial blocks 
 
7.3.1 FFT 
 
Requirement: 64 point FFT computation in 4 us as the 802.11a OFDM symbol including the guard interval is 4 us wide. 
 
 
 
 
 
 
 
 
 

Figure 8: 64 point Radix-4 FF T data flow diagram 

 
7.3.1.1 Different architectures 
 

?? Radix-4 Single-Path delay commutator 
?? Radix-4 Multi-Path delay commutator 
?? Radix-4 Single-Path delay feedback 
?? Pipelined or non-pipelined 

 
7.3.1.2 FFT storage 
 

?? Using single RAM – As only one RAM is available, large delays occur because of read and write cycles and 
therefore faster clock required to meet FFT time requirement of 4 us 

?? Using multiple storage, Data load/store happen in parallel, FFT Radix-4 utilization is improved and FFT 
computation time is less 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9: Different storage schemes for FFT 
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7.3.1.3 Twiddle factor complex multiplication 
 
Comparison shown for two options 

CORDIC 4 Real Multipliers 
High latency or Pipeline delay Single clock multiplication can be achieved 

No twiddle ROM required ROM required to store the twiddle factors 
 
7.3.1.4 Butterfly construction 
 
Since multipliers are the biggest block in Radix-4 butterfly, designer may choose to have 1, 2 or 3 complex multiplier 
instances based on clock, timing and latency requirements. Shown below are both the kinds 
 
 
 
 
 
 
 
 

Figure 10: Butterfly operation 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Lower latency with three parallel multipliers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Single complex multiplier, higher latency (or higher clock required for same latency) 
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7.3.2 Viterbi 
 
The ½ , length 7, convolutionally encoded stream is decoded using a Viterbi decoder. 
 
 
 
 
 
 
 
 

Figure 13: Viterbi Construction 

7.3.2.1 BMU  
 

Branch metrics computation unit calculates the hamming distances for the incoming pair of codes from four possible 
codes 

 
7.3.2.2 ACS 

 
Add, compare and select unit is used to update the path metric for all the 64 states and select the predecessor. For each 
of the 64 states, it adds current path metric and branch metric for both the predecessor states and selects the lower of the 
two as the new path metric and the predecessor information is passed on to the SMU unit.  
The width of the Path metric register and the ACS adders and subtractor will change based on whether a soft-decision or 
a hard-decision viterbi is ued. It also depends on the maximum metrics accumulated by metrics registers before a 
normalization is done. 

 
7.3.2.3 SMU 
 
Survivor metrics unit can be implemented by register-exchange or traceback memory method. 

 
Register-exchange Traceback memory 

Data bits for all possible paths in the trellis are stored in Flip-flops Decision bits are stored in traceback RAM 
Low latency = Traceback length High latency = 4 x Traceback length 

High gate count =~ 60 K for traceback length of 64 Low gate count =~25K + 256x64 RAM required 
High power consumption because of operation of all Flip-flops Low power consumption 

 
 

7.3.3 NCO 
 
NCO (Numerically controlled oscillator) is used for frequency offset correction. NCO generates sine and cosine waves that 
are mixed with the incoming Baseband signal to correct the frequency error. Various design parameters to be decided in 
NCO are given below  
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14: NCO 
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?? By using the fact the cos (? ) = sin (90 - ? ), a single LUT can be used to generate both sine and cosine values 
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?? The need for Sine/Cosine ROM can be eliminated by using a CORDIC rotator (if the pipeline delay that the CORDIC 
introduces can be tolerated). 

 
7.3.4 Arctan 
 
The tan-1 circuit is used during the estimation of the frequency error caused by local frequency PPM errors. This could be 
implemented as a simple LUT, which contains the Arctan values for different angles or it can be implemented by using a 
CORDIC circuit in vectoring mode. CORDIC is an abbreviation for Coordinate rotation digital computer. It involves 
performing the following equations iteratively. 

Let us say the complex vector is x0 + jy0 and our objective is to find z = tan-1(y0/x0), it can be achieved by doing the 
following. 

xi+1 = xi – yi*di*2
-i 

yi+1 = yi + xi*di*2
-i 

zi+1 = zi – di*tan-1(2-i). 
Where 

di = +1 if yi < 0, -1 otherwise  

 
i is the iteration number and decides the accuracy of the result. As can be seen, the CORDIC circuit is simple to construct 
and involves only shifts, additions and subtractions. 
 
 

Using LUT CORDIC 
Huge RAM needed for high accuracy Low gate count 

Low latency High latency because of iterative method 
 
CORDIC circuit is preferred as it results in a low gate count implementation.  
 
 

7.4 Optimize usage of hardware resources by reusing different blocks 
 
Hardware resources can be reused considering the fact that 802.11a system is a half-duplex system. The following blocks 
are re-used 
?? FFT/IFFT 
?? Interleaver/De-interleaver 
?? Scrambler/Descrambler 
?? Intermediate data buffers 
 
 
Since Adders and Multipliers are costly resources, special attention should be given to reuse them. An example shown 
below where an Adder/Multiplier pool is created and different blocks are connected to this. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Sharing of H/W resources 
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7.5 Optimize the widely used circuits 
 
Identify the blocks that are used at several places (several instances of the same unit) and optimize them. Optimization 
can be done for power and area. Some of the circuits that can be optimized are: 
 
7.5.1 Multipliers  
They are the most widely used circuits. Synthesis tools usually provide highly optimized circuits for multipliers and adders.  
In case optimized multipliers are not available, multipliers could be designed using different techniques like booth- (Non) 
recoded Wallace. 
 
7.5.2 ACS unit 
There are 64 instantiations of ACS unit in the Viterbi decoder. Optimization of ACS unit results in significant savings. 
Custom cell design (using foundry information) for adders and comparators could be considered. 

8 Debug support 
??To enable debugging the hardware a serial port or a parallel port interface could be provided 
?? The port could be used to control the core, issue transmit and receive commands, analyzing the receive data for 

errors, monitoring BER etc 
?? Test mode support can be provided in the core to facilitate selective testing of the modules inside 
 

9 RTL Simulations 
RTL simulations are done to achieve the following objectives: 
 
?? Functional verification for all transmit and receive Baseband functions for different data rates is done 
?? Necessary models are written to introduce noise and channel effects. Verilog PLI interface can be used to plug-in “C” 

models if they are available 
?? It is verified that different algorithmic blocks are implemented correctly in RTL, the same set of vectors used in 

algorithm simulations are applied to the RTL system and the outputs are compared. If simulations for algorithms are 
done in a tool like SPW, then this can be easily be done by importing the RTL blocks in SPW system 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 16: Simulation setup in SPW environment  Figure 17: Simulation setup in Verilog environment 

 

After algorithm verification, the verilog RTL code is typically tested on a prototype board using FPGAs before 
fabricating the ASIC. The details of these activities are outside the scope of this paper. 
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10 Conclusion 
 
In this paper, design approach for an OFDM Modem was presented. Different algorithms implemented in OFDM modem 
are identified.  
Implementation alternatives for different components of OFDM modem were discussed. It was found during the algorithm 
design that many blocks need complex multipliers and adders and therefore special attention needs to be given to 
optimize these circuits and maximize reusability. The need for verifying the algorithms in the same environment or the 
same set of test vectors with which the Fixed-point “C” implementation of algorithms are run is highlighted. 
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13 Acronyms and definitions 
 
AGC Automatic gain control 
AWGN Additive white gaussian noise 
BER Bit error rate 
BPSK  Binary phase shift keying 
BW Bandwidth 
EVM  Error vector magnitude 



FFT Fast Fourier transform 
IF Intermediate frequency 
ISI Inter symbol interference 
PA Power amplifier  
OFDM Orthogonal frequency division multiplexing 
QPSK  Quadrature phase shift keying 
QAM Quadrature amplitude modulation 
SPW Signal processing Work-system from Cadence 
SNR Signal to noise ratio 
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