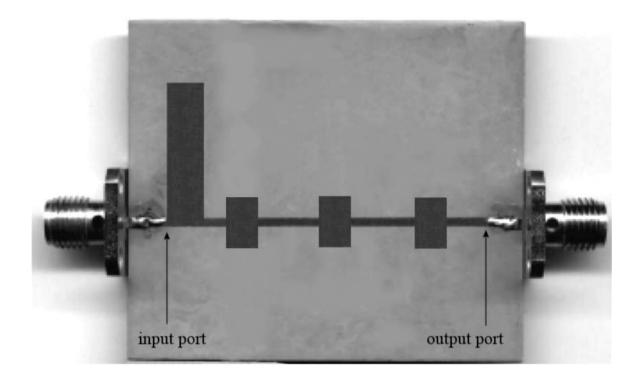
PUCRS – Escola Politécnica – Engenharia Elétrica

Microondas – T480 – 1° exercício aula 02/10/2019

Seja o two-port network mostrado na figura a seguir, cuja impedância característica é dada como sendo Z_0 =50 Ω :



Pede-se:

- a) Sabendo que a tensão e a corrente medidas no *input port* são $V_1 = 5e^{j45^\circ}$ [V] e $I_1 = 0.1e^{j45^\circ}$ [A] e que a tensão e a corrente medidas no *output port* são $V_2 = 3e^{-j45^\circ}$ [V] e $I_2 = 0.2e^{j90^\circ}$ [A], determine módulo e ângulo de fase das ondas incidente e refletida no *input port*. Resposta: |V1I| = 5 V arg(V1I) = 45 deg, |V1R| = 0 V arg(V1R) = -135 deg
- b) Determine o coeficiente de reflexão Γ_i no *input port*, p/ a condição operacional definida em a). Resposta: $\Gamma i = 0 \rightarrow V$ isto não haver reflexão no *input port*, o *two-port network* é dito ser *matched to the generator*
- c) Determine módulo e ângulo de fase das ondas incidente e refletida no *output port*, p/ a condição operacional definida em a). Resposta: |V2I| = 4.08V arg(V2I) = 74.931 deg, V2R = 6.153 V arg(V2R) = -80.073 deg
- d) Determine o coeficiente de reflexão Γ_o no *output port* , p/ a condição operacional definida em a). Resposta: $|\Gamma_0| = 1.508$ arg $(\Gamma_0) = -155.004$ deg
- e) Seja agora a condição operacional em que a carga conectada ao *output port* possue impedância idêntica à impedância característica Z_0 =50 Ω do *two-port network* mostrado na figura acima. Nesta condição são medidos os seguintes valores de tensão e corrente: $V_1 = 1.314e^{j12.4^{\circ}}$ [V], $I_1 = 15.4e^{-j21.5^{\circ}}$ [mA] e $V_2 = 0.8e^{j90^{\circ}}$ [V]. Determine os *scattering parameters* S_{11} e S_{21} do *two-port network*. Resposta: |S11| = 0.4 arg (S11) = 44.872 deg |S21| = 0.8 arg(S21) = 90.0 deg

$$II_{A} := 0.1 \cdot e^{j \cdot 45 \cdot \deg}$$

$$V2 := 3.0 \cdot e^{-j \cdot 45 \cdot \deg_{x}}$$

$$I2 := 0.2 \cdot e^{\mathbf{j} \cdot 90 \cdot \deg}$$

$$Z_0 := 50 \cdot \Omega$$

a) Da equação 2.62 do Cap III das notas de aula:

$$\boldsymbol{V}_{n} = \boldsymbol{V}_{n}^{+} + \boldsymbol{V}_{n}^{-}$$

$$\operatorname{ZoI}_{n} = \operatorname{V}_{n}^{+} - \operatorname{V}_{n}^{-}$$

Resolvendo p/ as incógnitas $V_n^{\ +}$ e $\ V_n^{\ -}$ o sistema de 2 equações acima, obtemos:

$$V_n^+ = (V_n + ZoI_n)/2$$

$$V_n^- = (V_n - ZoI_n)/2$$

 $\text{Sejam } VnI = V_n^{\ +} \ \text{e} \ VnR = V_n^{\ -} \ \text{, com } n=1,2, \text{ respectivamente as ondas de tensão incidente e refletida no } \textit{port } n.$

Daí, a partir das expressões p/ $V_n^{\ +}$ e $V_n^{\ -}$ acima, obtemos os seguintes resultados:

$$V1I := \frac{V1 + Zo \cdot I1}{2}$$

$$V1I := \frac{V1 + Zo \cdot I1}{2}$$
 $V1I = (3.536 + 3.536i) V |V1I| = 5 V arg(V1I) = 45 deg$

$$V1R := \frac{V1 - Zo \cdot I1}{2}$$

$$V1R = 0 V$$

$$V1R := \frac{V1 - Z0 \cdot I1}{2}$$
 $V1R = 0 V$ $|V1R| = 0 V$ $arg(V1R) = -135 deg$

b) Da equação 2.35 do Cap II das notas de aula:

 $\Gamma_i := \frac{V1R}{V1L}$ $\Gamma_i = 0$ \rightarrow Visto não haver reflexão no input port, o two-port network é dito ser matched to the generator

c) A partir das expressões p/ V_n^+ e V_n^- deduzidas em a):

$$V2I := \frac{V2 + Zo \cdot I2}{2}$$

$$V2I := \frac{V2 + Z0 \cdot I2}{2}$$

$$V2I = (1.061 + 3.939i) V |V2I| = 4.08 V arg(V2I) = 74.931 deg$$

$$V2R := \frac{V2 - Zo \cdot I2}{2}$$

$$V2R := \frac{V2 - Zo \cdot I2}{2} \qquad V2R = (1.061 - 6.061i) V \quad |V2R| = 6.153 V \quad arg(V2R) = -80.073 \deg V$$

d) Da equação 2.35 do Cap II das notas de aula:

$$\Gamma_0 := \frac{V2R}{V2R}$$

$$\Gamma$$
o = $-1.367 - 0.637$ i

$$|\Gamma_0| = 1.508$$

$$\Gamma_0 := \frac{V2R}{V2I}$$
 $\Gamma_0 = -1.367 - 0.637i$ $|\Gamma_0| = 1.508$ $\arg(\Gamma_0) = -155.004 \deg$

e) A partir das expressões p/ V_n^+ e V_n^- deduzidas em a), e dos novos valores medidos p/ V1, I1 e V2, temos:

 $\label{eq:continuous_problem} \text{W1} := 1.314 \cdot e^{\text{j} \cdot 12.4 \cdot \text{deg}} \text{V} \quad \text{M1} := 15.4 \cdot e^{-\text{j} \cdot 21.5 \cdot \text{deg}} \text{mA} \qquad \text{W2} := 0.8 \cdot e^{\text{j} \cdot 90 \cdot \text{deg}} \text{V}$

$$V2 := 0.8 \cdot e^{j \cdot 90 \cdot \text{deg}} V$$

$$V1I := \frac{V1 + Z0}{2}$$

$$V1I = (1 - 2.186i \times 10^{-5})V$$

VII =
$$\frac{\text{V1 + Zo} \cdot \text{I1}}{2}$$
 $\text{V1I} = \left(1 - 2.186i \times 10^{-5}\right) \text{V}$ $|\text{V1I}| = 1 \text{ V}$ $\text{arg}(\text{V1I}) = -1.253 \times 10^{-3} \text{ deg}$

$$V1R := \frac{V1 - Zo \cdot I1}{2}$$

$$V1R := \frac{V1 - Zo \cdot I1}{2} \qquad V1R = (0.283 + 0.282i) V \quad |V1R| = 0.4 V \text{ arg}(V1R) = 44.87 \text{ deg}$$

Daí, da definição de S11 temos:

 $S11 = \frac{V1R}{V1I}$ if V2I = 0 S11 = 0.283 + 0.282i |S11| = 0.4 arg(S11) = 44.872 deg

$$S11 = 0.283 + 0.282i$$

$$|S11| = 0.4$$

$$arg(S11) = 44.872 de$$

No output port vale a equação $V_2 = V_2^+ + V_2^-$. Uma vez que, do enunciado, o two-port network é matched to the load (ZL=Zo), não há onda incidente no *output port*, isto é V_2^+ =0. Portanto, $V_2=V_2^-$. Sejam $V2I=V_2^+$ e $V2R=V_2^-$. Da definição de

S21 e tendo em mente que p/ esta condição operacional V_2^+ =V2I = 0, temos:

$$S21 = \frac{V2R}{V1I}$$
 if $V2I = 0$ mas visto que $V2 = V_2^- = V2R$, temos que $S21 := \frac{V2}{V1I}$ resultando em:

$$S21 = -1.749 \times 10^{-5} + 0.8i$$

$$S21 = -1.749 \times 10^{-5} + 0.8i$$
 $|S21| = 0.8 \text{ arg}(S21) = 90.001 \text{ deg}$