PUCRS - Faculdade de Engenharia - Departamento de Engenharia Elétrica

Antenas e Propagação – T480 – Exercício Resolvido

1) Seja um enlace wireless que utiliza duas antenas Yagi-Uda conforme a Figura 1(b) abaixo.

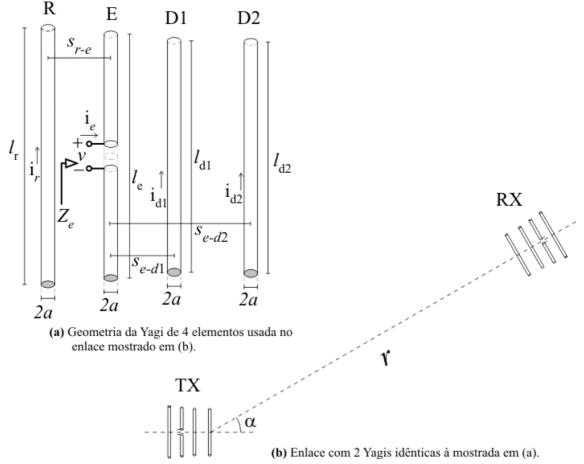


Figura 1: Enlace com duas antenas Yagi de 4 elementos, geometricamente idênticas, operando em um ambiente que se aproxima das condições de propagação no espaço livre. Ambas as antenas possuem perdas ôhmicas e dielétricas desprezíveis e estão contidas no mesmo plano (plano da página), distando entre si $r=10~{\rm Km}$, sendo $\alpha=30^\circ$. A Yagi TX opera sob uma ROE de 1:1 nos terminais de entrada e é alimentada por um transmissor cuja freqüência é $f=30~{\rm MHz}$ e cuja potência de saída é $1~{\rm KW}$. Ambas as Yagis possuem as seguintes dimensões geométricas: $l_{\rm r}=5.08~{\rm m}$, $l_{\rm e}=4.826~{\rm m}$, $l_{\rm d1}=4.623~{\rm m}$, $l_{\rm d2}=4.623~{\rm m}$, $s_{r-e}=2.00~{\rm m}$, $s_{e-d1}=2.00~{\rm m}$, $s_{e-d2}=4.00~{\rm m}$ e $a=25.0~{\rm mm}$.

Determine:

- a) A impedância de entrada Z_e das antenas (1.0 ponto).
- b) A resistência de radiação das antenas (1.0 ponto).
- c) As correntes **de radiação** nos elementos da Yagi TX (1.0 ponto).
- d) A relação frente-costas em dB da Yagi TX (1.0 ponto).
- e) O ganho em dBi da Yagi TX (1.0 ponto).
- f) A área de recepção máxima da Yagi RX em [m²] (1.0 ponto).
- g) O $|E_{\theta}|$ em [V/m] nas vizinhanças da Yagi RX originado pela irradiação da Yagi TX (1.0 ponto).
- h) O Vetor de Poynting $[W/m^2]$ nas vizinhanças da Yagi RX originado pela Yagi TX (1.0 ponto).
- i) O valor eficaz da tensão v_{oc} à circuito aberto nos terminais da Yagi RX (1.0 ponto).
- j) Suponha que o plano que contém a Yagi TX seja paralelo ao solo e que a mesma aponte para Norte. Determine o valor do $|E_{\theta}|$ da frente de onda que atinge um avião "A", distante 30Km em linha reta a Noroeste da Yagi TX, sabendo que "A" voa a uma altitude de 10Km (1.0 *ponto*).

PUCRS - Faculdade de Engenharia - Departamento de Engenharia Elétrica

Antenas e Propagação – T480 – Exercício Resolvido

Solução

Parâmetros geométricos dos elementos da Yagi - C: coordenadas em [m], L: tamanho em [m], R: raio em [mm] :

a) Matriz impedância mútua ${\bf Z}$ entre os elementos da Yagi:

$$Z = \begin{bmatrix} 80.8653 + 57.1364i & 53.8492^{-} & 17.9152i & 6.3868^{-} & 33.1223i & -22.2476^{-} & 16.1821i \\ 53.8638^{-} & 22.3851i & 67.1262 + 16.9941i & 45.0004^{-} & 15.0291i & 6.1804^{-} & 31.3183i \\ 6.4358^{-} & 38.2055i & 45.0715^{-} & 18.4531i & 57.8711^{-} & 14.3069i & 41.6057^{-} & 15.4752i \\ -22.2644^{-} & 14.4378i & 6.2264^{-} & 33.5342i & 41.6057^{-} & 15.4752i & 57.8711^{-} & 14.3069i \end{bmatrix}$$

Nota 1: As impedâncias \mathbf{Z}_{ij} na matriz \mathbf{Z} são calculadas através dos programas \mathbf{Z}_{i} CyDip e \mathbf{Z}_{ij} CyPDS em função de λ , em função das distâncias entre os elementos da Yagi, em função do tamanho dos elementos da Yagi e em função do raio dos elementos da Yagi.

Nota 2: Os índices i e j das impedâncias Z_{ij} são relacionados aos respectivos elementos da Yagi segundo a seguinte convenção: 0→refletor, 1→excitador, 2→diretor1 e 3→diretor2. Impedâncias Z_{ij} com i=j (diagonal da matriz Z) são impedâncias próprias e devem ser calculadas com o programa Zi_CyDip. Todas as demais impedâncias são impedâncias mútuas e devem ser calculadas com o programa Zm_CyPDS. Ambos os programas utilizam constante de precisão EPS=6×10⁻⁸.

• Impedância de entrada Ze "vista" nos terminais do elemento excitador:

Seja $\underline{\underline{V}}= [0\ V\ 0\ 0]^T$ o vetor das tensões aplicadas aos elementos da Yagi e seja $\underline{\underline{I}}= [Ir\ Ie\ Id1\ Id2]^T$ o vetor das correntes nos elementos da Yagi. Sendo assim, temos que $\underline{\underline{V}}= \underline{Z}\underline{\underline{I}}$, ou $\underline{\underline{I}}= \underline{Z}^{-1}\underline{\underline{V}}$, e daí podemos escrever :

$$V := 1 \quad V \qquad \begin{bmatrix} Ir \\ Ie \\ Id1 \\ Id2 \end{bmatrix} := Z^{-1} \cdot \begin{bmatrix} 0 \\ V \\ 0 \\ 0 \end{bmatrix} \quad A \qquad \begin{bmatrix} Ir \\ Ie \\ Id1 \\ Id2 \end{bmatrix} = \begin{bmatrix} -6.298 \cdot 10^{-3} + 0.013 i \\ 0.06 - 0.031 i \\ -0.107 + 0.017 i \\ 0.073 + 0.019 i \end{bmatrix} \quad A$$

$$Ze := \frac{V}{Ie} \qquad Ze = 13.199 + 6.751 i \qquad \Omega$$

<u>Nota 3</u>: A tensão V = 1V aplicada ao elemento excitador da Yagi não **corresponde** ao valor encontrado em seus terminais sob as condições de operação especificadas no enunciado. A tensão aplicada V = 1V é um artifício para obter a impedância de entrada Ze como a razão entre V = 1V e a corrente Ie resultante nos terminais do elemento excitador.

2

PUCRS – Faculdade de Engenharia – Departamento de Engenharia Elétrica

Antenas e Propagação – T480 – Exercício Resolvido

b) Resistência de Radiação da Yagi (Equação (35) – Cap IV):

$$Rr := if \left(L_1 > \frac{\lambda}{2}, Re(Ze) \cdot sin \left(\frac{\pi \cdot L_1}{\lambda} \right)^2, Re(Ze) \right)$$

$$Rr = 13.2 \quad \Omega$$

c) Do enunciado é dado que o transmissor tem potência de saída P e impedância de saída Zg, e aplica uma potência P nos terminais da Yagi. Visto que a Yagi opera sob ROE 1:1 (isto é, Ze = Zg*), então, o valor de pico no tempo da corrente i_e e da tensão V nos terminais do excitador são dados por:

P :=
$$1 \cdot 10^3$$
 W Ie := $\sqrt{\frac{2 \cdot P}{Re(Ze)}}$ Ie = 12.309 A
V := Ze · Ie V = 162.477 + 83.096i V
 $|V| = 182.494$ V arg(V) = 27.087°deg

• Uma vez obtida a tensão V nos terminais do excitador sob as condições de operação especificadas no enunciado, as correntes de entrada (isto é, correntes na posição central de cada elemento -> só tem sentido falar em "entrada" para o excitador) em todos os elementos da Yagi são dadas através da operação matricial $\underline{I} = Z^{-1}\underline{V}$, isto é:

$$\begin{bmatrix} Ir \\ Ie \\ Id1 \\ Id2 \end{bmatrix} := Z^{-1} \cdot \begin{bmatrix} 0 \\ V \\ 0 \\ 0 \end{bmatrix} \qquad I := \begin{bmatrix} Ir \\ Ie \\ Id1 \\ Id2 \end{bmatrix} \qquad I = \begin{bmatrix} -2.098 + 1.578i \\ 12.309 \\ -18.761 - 6.062i \\ 10.331 + 9.112i \end{bmatrix} \qquad \text{A}$$

• Referindo as correntes à posição de máxima corrente nos elementos (corrente de radiação), temos que (Equação (33) – Cap IV):

$$\begin{split} \operatorname{Ir} &:= \operatorname{if} \left[L_0 > \frac{\lambda}{2}, \frac{\operatorname{Ir}}{\sin \left(\frac{\pi \cdot L_0}{\lambda} \right)}, \operatorname{Ir} \right] & \operatorname{Ie} := \operatorname{if} \left[L_1 > \frac{\lambda}{2}, \frac{\operatorname{Ie}}{\sin \left(\frac{\pi \cdot L_1}{\lambda} \right)}, \operatorname{Ie} \right] \\ \\ \operatorname{Id1} &:= \operatorname{if} \left[L_2 > \frac{\lambda}{2}, \frac{\operatorname{Id1}}{\sin \left(\frac{\pi \cdot L_2}{\lambda} \right)}, \operatorname{Id1} \right] & \operatorname{Id2} := \operatorname{if} \left[L_3 > \frac{\lambda}{2}, \frac{\operatorname{Id2}}{\sin \left(\frac{\pi \cdot L_3}{\lambda} \right)}, \operatorname{Id2} \right] \end{split}$$

$$| Ir | = 2.626$$
 A $arg(Ir) = 143.049 \circ deg$
 $| Ie | = 12.309$ A $arg(Ie) = -4.13 \cdot 10^{-15}$ $\circ deg$
 $| Id1 | = 19.716$ A $arg(Id1) = -162.092 \circ deg$
 $| Id2 | = 13.775$ A $arg(Id2) = 41.414 \circ deg$

PUCRS - Faculdade de Engenharia - Departamento de Engenharia Elétrica

Antenas e Propagação – T480 – Exercício Resolvido

d) Relação Frente-Costas:

Nota 4: O procedimento numérico

E θ _GeneralDipoleArray (r, λ , L_k , C_k , I_k , θ , ϕ), a seguir utilizado, implementa o módulo da Equação (14) do Capítulo V com tamanho L_k do k-ésimo elemento do array de K=4 elementos indexado por k:

$$\left| E_{\theta} \right| = \frac{60}{r} \left| \sum_{k=0}^{K-1} I_{k} e^{j\frac{2\pi}{\lambda} (x_{k} \sin \theta \cos \phi + y_{k} \sin \theta \sin \phi + z_{k} \cos \theta)} \left\{ \frac{\cos \left(\frac{L_{k}}{\lambda} \pi \cos \theta \right) - \cos \left(\frac{\pi L_{k}}{\lambda} \right)}{\sin \theta} \right\} \right| \left[\frac{V}{m} \right]$$

onde C_k define as coordenadas (x_k, y_k, z_k) do k-ésimo elemento do array.

 $r far := 100 \cdot \lambda$ (r_far: r para far field – r > 10λ – região de campo distante)

CampoParaFrente $= E\theta$ _GeneralDipoleArray(r_far, λ , L, C, I, $90 \cdot deg$, 0)

CampoParaTras := $E\theta$ _GeneralDipoleArray(r_far, λ , L, C, I, $90 \cdot deg$, $180 \cdot deg$)

$$FB = 20 \cdot log \left(\frac{CampoParaFrente}{CampoParaTras} \right)$$

$$FB = 13.3$$
 dB

e) Ganho G da Yagi sobre a Antena Isotrópica para η =100% = 1.0 (não há perdas nas antenas):

 $E\theta_Yagi := \sqrt{\eta} \cdot E\theta_GeneralDipoleArray(r_far, \lambda, L, C, I, 90 \cdot deg, 0)$

$$\frac{P}{4 \cdot \pi \cdot r_{far}^{2}} = \frac{\left(\frac{E\theta_{Iso}}{\sqrt{2}}\right)^{2}}{120 \cdot \pi} = S \qquad \Rightarrow \qquad E\theta_{Iso} := \sqrt{\frac{60 \cdot P}{r_{far}^{2}}}$$

$$G := \left(\frac{E\theta - Yagi}{E\theta - Iso}\right)^{2}$$
 vezes

$$GdBi = 10 \cdot log(G)$$
 $GdBi = 11.9$ dBi

PUCRS – Faculdade de Engenharia – Departamento de Engenharia Elétrica Antenas e Propagação – T480 – Exercício Resolvido

f) Área de Recepção Máxima para η =100% = 1.0 (não há perdas nas antenas):

Nota - É implícito da definição de ARXmax que a antena RX opera sob máxima transferência de potência (mtp), isto é, opera sob ROE 1:1 ou, equivalentemente ZI = Zg*. Daí, portanto, ser válido utilizar o ganho G da Yagi TX (a qual, do enunciado, opera sob mtp) para o cálculo do ARXmax da Yagi RX (a qual, do enunciado, é idêntica à Yagi TX)

$$ARXmax := \frac{G \cdot \lambda^2}{4 \cdot \pi}$$

$$ARXmax = 122.1 \qquad m^2$$

g) Campo E_{θ} em um ponto p distante r=10Km da Yagi TX a um ângulo α =30° com o eixo do lobo principal da Yagi TX:

h) Vetor de Poynting em um ponto p distante r=10Km da Yagi TX a um ângulo α =30° com o eixo do lobo principal da Yagi TX:

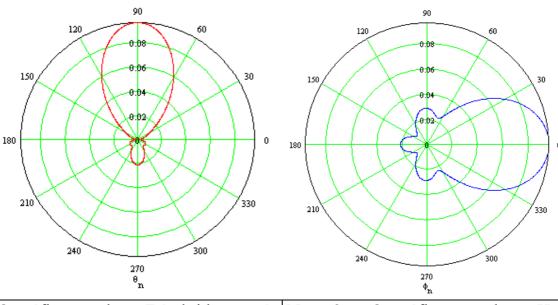
$$Zfreespace := 120 \cdot \pi \qquad \Omega$$

$$S := \frac{\left(\frac{E\theta}{\sqrt{2}}\right)^2}{Zfreespace} \qquad S = 4.605 \cdot 10^{-6} \qquad \text{W/m}^2$$

i) Tensão $\,\mathrm{Voc}\,$ nos terminais da Yagi RX (idêntica à TX) distante $\,$ r=10Km da TX:

Nota - A Yagi RX aponta seu lobo principal para a Yagi TX a um ângulo α =30° com o eixo da Yagi TX.

$$Voc := \sqrt{4 \cdot ARXmax \cdot S \cdot Rr}$$
 $Voc = 0.172$ Vrms


j) Valor do $|E_{\theta}|$ da frente de onda que atinge um avião "A" distante dA=30Km em linha reta a Noroeste da Yagi TX, voando a uma altitude hA=10Km:

$$\begin{array}{lll} \theta := 45 \cdot deg & \text{(Noroeste)} & hA := 10 \cdot 10^3 & \text{m} & dA := 30 \cdot 10^3 & \text{m} \\ \\ \varphi := asin \left(\frac{hA}{dA}\right) & \varphi = 19.471 \circ deg \\ \\ E\theta_A := \sqrt{\eta} \cdot E\theta_GeneralDipoleArray(dA, \lambda, L, C, I, \theta, \varphi) & E\theta_A = 8.86 \cancel{e} \cdot 10^{-3} & \text{V/m} \end{array}$$

 $\mathbf{Ap\hat{e}ndice})$ A título de ilustração, os contornos de $|E_{ heta}|$ nos planos E e Ha uma distância r=10Km da Yagi TX (obtidos da Equação (14) do Capítulo V com L indexado por k – vide "Nota" no ítem "d" acima) são:

 $|E_{\theta}|$ no plano E em [V/m] a 10Km:

 $|E_{\theta}|$ no plano H em [V/m] a 10Km:

Nota 1 - O gráfico no plano E é obtido através Nota 2 - O gráfico no plano H é dos procedimentos:

$$\sqrt{\eta}\cdot E\theta_General Dipole Array\left(r,\lambda,L,C,I,\theta_{n},0\right)$$

$$\sqrt{\eta}\cdot E\theta_General Dipole Array\left(\!r,\lambda,L,C,I,\theta_n,180\cdot deg\right)\cdot e^{ij\cdot 180\cdot deg}$$

com $0 \le \theta_n < 180^\circ$.

obtido através do procedimento: