Princípios Básicos de Teoria da Informação

Teorema da Codificação de Fonte

Até que limite é possível comprimir um conjunto de dados?

(Entropia)

Teorema Fundamental de Shannon

Qual a maior taxa de transmissão de informação possível em um canal para que se possa controlar a tx de erro (máx) admissível?

(Capacidade de Canal)

Entropia – Uma Possível Medida de Informação

 A observação da ocorrência de um evento do espaço amostral de uma variável aleatória nos dá informação;

- Eventos raros contêm mais informação do que eventos comuns:
- "O sol nasceu hoje pela manhã": evento comum → pouca informação;
- "Porto Alegre foi atingida por um terremoto hoje pela manhã":
 evento raro → maior conteúdo de informação.

Era da Informação x Era dos dados

A Entropia (proposta por Hartley, em 1928) é uma medida logarítmica de informação que reflete este raciocínio intuitivo.

- Ao registrarmos o valor das amostras na saída do quantizador de um codificador que apresente M níveis de quantização, após o registro de um número suficiente de amostras, podemos fazer um estudo estatístico da probabilidade de ocorrência de cada uma das M possíveis amostras (mensagens $N = log_2 M$ bits);
- A saída do quantizador pode ser considerada uma variável aleatória discreta X, com espaço de amostras definido pelo conjunto $\Omega_X=\{m_k\}=\{m_0,m_1,\dots,m_{M-1}\}$ de M mensagens m_k com probabilidade de ocorrência $p_k,\,k=0,1,\dots,M-1.$
- Segundo Hartley, a auto-informação $h(m_k)$ implícita na ocorrência de uma mensagem m_k , com probabilidade de ocorrência p_k , e' definida por:

$$h(m_k) = -log_2(p_k)$$
 [bits]

$$h(m_k) = -log_2(p_k) [bits]$$

$$log_2(y) = \frac{log_{10}y}{log_{10}2}$$

- A partir da equação da auto-informação, pode-se concluir que:
 - Como $0 \le p_k \le 1$, $h(m_k)$ é sempre um número positivo;
 - $-h(m_k)$ é medida em bits, devido à função logarítmica de base 2;
 - Como $log_2(u)$ é uma função monotonicamente crescente com u, a auto-informação $h(m_k)=-log_2(p_k)$ de uma mensagem rara é maior do que a de uma mensagem comum.

Auto-informação

$$h(m_k) =$$

p_k	0.2	0.4	0.6	0.8	1
$log_2(p_k)$	-2.32	-1.32	-0.74	-0.32	0
$-log_2(p_k)$	2.32	1.32	0.74	0.32	0

A média da Auto-Informação das M mensagens m_k do conjunto $\Omega_X = \{m_0, m_1, \dots, m_{M-1}\}$ é denominada ENTROPIA da variável aleatória X.

(ENTROPIA da variável aleatória $X \equiv$ Entropia do conjunto Ω_X de mensagens).

Assim, a entropia H(X) da variável aleatória X, cujo espaço de amostras é o conjunto Ω_X de M mensagens, é dada por:

$$H(X) = E\{h(m_k)\} = E\{-\log_2(p_k)\} = -\sum_{k=0}^{M-1} p_k \log_2(p_k)$$
 [bits],

onde $E\{.\}$ é o operador estatístico que retorna o valor esperado do argumento [Carlson].

Note que, se as M mensagens apresentam probabilidades de ocorrência iguais (mensagens equiprovaveis), então $p_k=1/M$ para $k=0,1,\ldots,M-1$ e

$$H(X) = -\frac{1}{M} \sum_{k=0}^{M-1} log_2\left(\frac{1}{M}\right) = log_2(M)$$
 [bits]

Para
$$M = 4$$
; $\Omega_X = \{m_0, m_1, m_2, m_3\}$; $p_0 = p_1 = p_2 = p_3 = 0.25$; $H(X) = -\frac{1}{4} \{log_2(\frac{1}{4})4\} = 2 \ (= log_24) \ [bits]$

Exemplo 1:

Seja um sistema para transmissão digital que utilize no codificador de fonte um conjunto $\Omega_X = \{m_0, m_1\}$ com M=2 possíveis níveis de quantização).

Seja q a probabilidade de ocorrência que a saída X do quantizador assuma valor m_0 , isto e', $q = P(X = m_0)$.

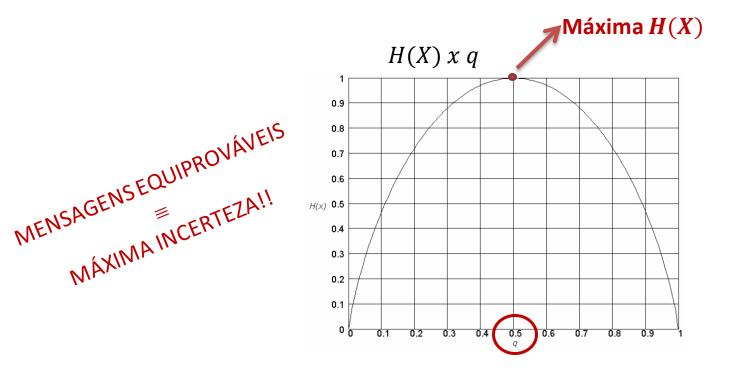
Para determinar o gráfico da Entropia de X em função de q, consideremos que, se

$$q = P(X = m_0) \rightarrow P(X = m_1) = 1 - q.$$

Portanto,

$$\begin{split} H(X) &= -\sum_{k=0}^{M-1} p_k log_2(p_k) = -p_0 log_2(p_0) - p_1 log_2(p_1) = \\ &= -q log_2(q) - (1-q) log_2(1-q) [bits] \end{split}$$

$$H(X) = -q \log_2(q) - (1 - q) \log_2(1 - q)$$



Note, pelo gráfico, que H(X) é máxima quando as mensagens m_0 e m_1 têm a mesma probabilidade de ocorrência, ou seja, quando q=(1-q)=0.5.

$$m\acute{a}x\ H(X) = -0.5log_2(0.5) - (0.5)log_2(0.5) = -0.5(-1) - (0.5)(-1) = 1$$

• Este comportamento acontece não só para um espaço de amostras Ω_X com apenas M=2 mensagens de probabilidades iguais, mas ocorre também para qualquer quantidade M de mensagens de mesma probabilidade.

• O valor máximo da entropia de uma variável aleatória X é

$$H(X) = log_2(M),$$

valor que ocorre quando as probabilidades de ocorrência dos M elementos do espaço de amostras Ω_X são todas iguais à 1/M (i. é, os M elementos de Ω_X são equiprováveis). [Ash]

Taxa de Informação

 Seja uma fonte de informação A aplicada à entrada de um codificador.

- Suponhamos que estamos registrando a saída X do quantizador e calculando a entropia H(X).
- Se a fonte é amostrada a uma taxa tal que o quantizador gera r[mensagens/segundo] com uma entropia H[bits/mensagem], então a Taxa de Informação R é definida como

$$R = rH [bits/s] \qquad \frac{mensagens}{s} * \frac{bits}{mensagens} = bits/s$$

 E é uma medida do número médio de bits que precisa ser transportado por segundo através do sistema.

Exemplo 2:

Seja um sistema para transmissão digital que utilize no codificador de fonte um conjunto $\Omega_X = \{m_0, m_1, m_2, m_3\}$ com M=4 possíveis mensagens (ou M=4 níveis de quantização).

As probabilidades de ocorrência são:

$$P(X = m_0) = P(X = m_3) = 1/8 \text{ e } P(X = m_1) = P(X = m_2) = 3/8$$

O intervalo de amostragem de m(t) é $T_s = \frac{1}{2f_M} = 50\mu s$.

Determine a taxa de informação gerada pelo sinal m(t) na saida X do quantizador.

$$H(X) = -\sum_{k=0}^{M-1} p_k \log_2(p_k) \left[\frac{bits}{mensagem} \right] \qquad R = rH \left[bits/s \right]$$

$$P(X = m_0) = P(X = m_3) = 1/8$$
 e $P(X = m_1) = P(X = m_2) = 3/8$
$$T_S = \frac{1}{2f_M} = 50\mu s; \quad R = rH \text{ [bits/s]}$$

 \blacktriangleright A informação média gerada pelo sinal fonte m(t) em X (Entropia) \acute{e} :

$$H(X) = -\frac{1}{8}log_2(\frac{1}{8}) - \frac{3}{8}log_2(\frac{3}{8}) - \frac{3}{8}log_2(\frac{3}{8}) - \frac{1}{8}log_2(\frac{1}{8}) = 1.8 [bits/mensagem]$$

Como o intervalo de amostragem de m(t) é $T_S = \frac{1}{2f_M} = 50 \mu s$, são geradas

$$r = \frac{1}{T_s} = 20000 \left[\frac{mensagens}{segundo} \right].$$

Assim, a taxa de informação R será:

$$R = rH = 20000 * 1.8 = 36000 \left[\frac{bits}{s} \right]$$

Portanto, este sinal fonte demandará 36kbps para que possa ser transmitido.

Codificação por Entropia

- Considerando que o quantizador de um codificador apresente M níveis de quantização e codifique o sinal m(t) quantizado com sequências de $N = log_2(M)$ bits.
- O código para compressão de dados considera <u>cada uma das M</u> <u>possíveis sequências de N bits como uma mensagem de N bits</u> e associa <u>a cada uma delas uma palavra-código cujo número de bits</u> <u>depende da probabilidade de ocorrência da mensagem.</u>

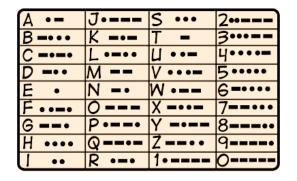
probabilidade ↑ bits ↓

- Este critério é crucial para a eficiência da compressão. Um código que segue este critério faz com que mensagens que ocorrem frequentemente necessitem de menos bits para serem transmitidas e, portanto, o efeito global é o de permitir que mais informação possa ser transmitida no mesmo intervalo de tempo.
- Quando um sistema digital é projetado, é feito um estudo estatístico da probabilidade de ocorrência de cada uma das possíveis mensagens para que o código compressor possa ser especificado. O conjunto de M valores obtidos, cuja soma forçosamente tende para 1.0, é uma boa aproximação das probabilidades de ocorrência de cada uma das M possíveis mensagens.

Códigos para compressão com base no princípio **probabilidade** \uparrow **bits** \downarrow

são denominados de processos para Codificação por Entropia.

O veterano **Código Morse**, utilizado para enviar informação por telegrafia desde a I Guerra Mundial, é um exemplo histórico desta classe de códigos.



probabilidade ↑ código ↓

A letra "E" é a letra mais frequente na escrita em inglês e é representada por um único "ponto".

Cada letra do alfabeto A - Z é uma mensagem do Código Morse;

O <u>conjunto de caracteres</u> utilizado para compor as palavras-código do Código Morse é o conjunto $\{\bullet, -\}$;

A cada mensagem é atribuída uma sequência de "pontos" e/ou "traços" representados em telegrafia por tons audíveis curtos e/ou longos;

O mapeamento é tal que letras mais prováveis na escrita inglesa são associadas a palavras-código curtas e letras menos prováveis são associadas a palavras-código longas.

A Entropia é uma medida do conteúdo de informação associado a uma variável aleatória discreta X, com espaço de amostras definido pelo conjunto $\Omega_X = \{x_i\} = \{x_0, x_1, \dots, x_{M-1}\}$ de M eventos x_i com probabilidades de ocorrência $\{p_i\}$, $i=0,1,\dots,M-1$.

Quando X é a saída de uma fonte de informação discreta, a entropia H(X) da fonte representa a quantidade média de informação emitida pela fonte.

?

Podemos considerar um código para compressão por entropia como um operador $\theta\{\,.\,\}$, tal que $S=\theta\{\,\,\,\}$, onde

 $\Omega = \{x_i\} = \{x_0, x_1, ..., x_{M-1}\}$ é o conjunto de M possíveis <u>mensagens</u> a serem codificadas e

 $S = \{s_i\} = \{s_0, s_1, ..., s_{M-1}\}$ é o conjunto de M possíveis <u>palavras-código</u> ou <u>símbolos</u> resultantes da codificação.

O operador $\theta\{.\}$ efetua um **mapeamento unívoco** entre cada mensagem e respectiva palavra-código, tal que mensagens com maior probabilidade de ocorrência são mapeadas em palavras-código de menor tamanho, e vice-versa.

- O <u>conjunto de caracteres do código</u> ou <u>alfabeto do código</u> é o conjunto $A = \{a_0, a_1, \dots, a_{D-1}\}$ composto por D elementos, de cuja composição são formadas cada uma das palavra-código.
- As palavras-código formadas do alfabeto A, as quais constituem o conjunto imagem do mapeamento $\theta\{.\}$, são assumidas serem distintas entre si, caso contrário $\theta\{.\}$ não seria unívoco.

Exemplo 3: Seja o alfabeto $A = \{a_0, a_1, a_2\}$ e o conjunto de mensagens $\Omega = \{x_0, x_1, x_2, x_3\}$. Um possível código $\theta\{.\}$ seria conforme tabela abaixo.

Mensagem	Palavra-código s_i associada a x_i por $s_i = \theta\{x_i\}$
x_0	$a_0 a_1$
x_1	$a_0a_1a_2$
x_2	a_0
x_3	a_1

Exemplo 4: Seja o alfabeto $A=\{a_0,a_1,a_2\}$ e o conjunto de mensagens $\Omega=\{x_0,x_1,x_2,x_3\}=\{00,01,10,11\}$ resultante da codificação da saída de um quantizador com 4 níveis de quantização. Um possível código $\theta\{\,.\,\}$ seria

Mensagem	Sequência	Palavra-código s_i associada a x_i por $s_i = heta\{x_i\}$
x_0	00	a_0a_1
x_1	01	$a_0a_1a_2$
x_2	10	a_0
x_3	11	a_1

Obs:

As palavras-código usualmente originam-se de um alfabeto binário $A = \{0,1\} \rightarrow bits$. Para um alfabeto ternário, $A = \{0,1,2\} \rightarrow trits$, etc.

Exemplo 5: Seja o alfabeto $A = \{0,1\}$ e o conjunto de mensagens $\Omega = \{x_0, x_1, x_2, x_3\} = \{00,01,10,11\}$. Um possível código $\theta\{.\}$ seria:

Mensagem	Sequência	Palavra-código s_i associada a x_i por $s_i = \theta\{x_i\}$
x_0	00	0
x_1	01	010
x_2	10	01
x_3	11	10

O tamanho $l_{\rm i}$ de uma palavra-código ou símbolo s é definido pelo número de caracteres do alfabeto A utilizado na construção da palavra-código.

Exemplo 6: Seja o código binário $(A=\{0,1\})$ do Exemplo 5. O tamanho l_i de cada palavra-código ou símbolo s_i é

Mensagem	Sequência	Palavra-Código s_i associada a m_i por $s_i = heta\{m_i\}$	l_i
x_0	00	0	1
x_1	01	010	3
x_2	10	01	2
x_3	11	10	2

O objetivo da **Codificação por Entropia** é encontrar um código $\theta\{\,.\,\}$ que minimize o **tamanho médio** \overline{L} dos símbolos emitidos pela fonte, a partir do conjunto de M possíveis símbolos $S=\{s_i\}=\{s_0,s_1,\ldots,s_{M-1}\}$, sendo \overline{L} dado por

$$\bar{L} = \sum_{i=0}^{M-1} p_i l_i$$

onde p_i \acute{e} a probabilidade de ocorrência da mensagem x_i e l_i é o tamanho do símbolo s_i , associado à mensagem x_i através do código $\theta\{\,.\,\}$.

- A Codificação por Entropia assume que a fonte é <u>sem memória.</u>
- Uma fonte é considerada sem memória quando as mensagens emitidas pela fonte são estatisticamente independentes, i.e., a ocorrência de uma determinada mensagem x_i não afeta a probabilidade de ocorrência da mensagem x_i , com $i,j=0,1,\cdots,M-1$.
- Esta condição é necessária pois, caso contrário, a função $L=f(p_i,l_i)$ a ser minimizada, dependeria do desenrolar temporal da sequência de mensagens emitidas pela fonte, o que resultaria em um código $\theta\{\,.\,\}$ variável no tempo.
- Embora poucas fontes físicas sigam exatamente o modelo de uma fonte sem memória, códigos $\theta\{.\}$ constantes no tempo (resultantes da suposição de independência estatística) são amplamente utilizados como códigos compressores, mesmo quando a dependência estatística da fonte resulta na impossibilidade de minimização de \overline{L} durante a totalidade do tempo de codificação.

Exemplo 7: Seja um sistema para transmissão digital que utilize no Codificador de Fonte um conjunto $\Omega = \{x_0, x_1, x_2, x_3\} = \{00,01,10,11\}$ com M=4 possíveis mensagens (ou M=4 níveis de quantização sob o ponto de vista do quantizador).

As amostras na saída X do quantizador são tais que a ocorrência de uma não altera a probabilidade de ocorrência da outra (i.e., as mensagens são estatisticamente independentes). As probabilidades são

$$P(X = x_0) = \frac{1}{2}$$
, $P(X = x_1) = \frac{1}{4}$, $P(X = x_2) = P(X = x_3) = \frac{1}{8}$

O código compressor $\theta\{.\}$ é conforme tabela abaixo.

Mensagem	Sequência	Palavra-Código s_i associada a m_i por $s_i = oldsymbol{ heta}\{m_i\}$
x_0	00	0
x_1	01	10
x_2	10	110
x_3	11	111

Determine a Entropia da Fonte H(X), medida na saída do quantizador, e o comprimento médio \overline{L} (θ) do código $\theta\{.\}$.

Exemplo 7: (continuação)

$$H(X) = -\sum_{k=0}^{M-1} p_k \log_2(p_k)$$
 $\bar{L} = \sum_{i=0}^{M-1} p_i l_i$

x_i	p_i	Símbolo s_i associado a x_i por $s_i = \theta\{x_i\}$	l_i
x_0	1/2	0	1
x_1	1/4	10	2
x_2	1/8	110	3
x_3	1/8	111	3

Entropia da fonte (H(X))

$$H(X) = -\frac{1}{2}\log_2\left(\frac{1}{2}\right) - \frac{1}{4}\log_2\left(\frac{1}{4}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) - \frac{1}{8}\log_2\left(\frac{1}{8}\right) = 1.75 \ [bits/mensagem]$$

Comprimento médio do código θ { .} $(\bar{L} (\theta))$

$$\overline{L}(\theta) = \frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{1}{8} * 3 + \frac{1}{8} * 3 = 1.75 [bits/símbolo]$$

Exemplo 8: Seja o código compressor $\theta\{.\}$ conforme definido abaixo:

x_i	p_i	Símbolo s_i associado a x_i por $s_i = eta\{x_i\}$	l_i
x_0	1/3	0	1
x_1	1/3	10	2
x_2	1/3	11	2

Determine a Entropia da Fonte H(X), medida na saída do quantizador, e o comprimento médio $\overline{L}(\theta)$ do código $\theta\{.\}$.

$$H(X) = -\sum_{k=0}^{M-1} p_k \log_2(p_k) \qquad \bar{L} = \sum_{i=0}^{M-1} p_i l_i$$

$$H(X) = -\frac{1}{3}log_{2}\left(\frac{1}{3}\right) - \frac{1}{3}log_{2}\left(\frac{1}{3}\right) - \frac{1}{3}log_{2}\left(\frac{1}{3}\right) = 1.58 \ [bits/mensagem]$$

$$\overline{L}(\theta) = \frac{1}{3} * 1 + \frac{1}{3} * 2 + \frac{1}{3} * 2 = 1.67 \ [bits/símbolo]$$

Códigos Univocamente Decodificáveis

- Um código que pretenda ser útil deve pertencer à classe de códigos Univocamente Decodificáveis, caso contrário é impossível efetuar a decodificação sem que ocorra ambiguidade.
- Um código é Univocamente Decodificável (UD) quando qualquer sequência de caracteres do alfabeto A passível de ser formada a partir da <u>justaposição</u> de um número qualquer de símbolos pertencentes $S = \{s_i\} = \{s_0, s_1, ..., s_{M-1}\}$ puder ser associada, ao ser decodificada, a uma única mensagem em $\Omega = \{x_i\} = \{x_0, x_1, ..., x_{M-1}\}$.
- Conceito de justaposição: A justaposição de N símbolos (ou palavras-código) $\{s_i, s_{i+1}, \dots, s_{i+N-1}\}$ é a sequência α formada pela transmissão do símbolo s_i , seguido da transmissão do símbolo s_{i+1} , e assim sucessivamente até a transmissão do símbolo s_{i+N-1} , cuja representação é $\alpha = S_i S_{i+1} \dots S_{i+N-1}$.

• **Exemplo 9:** Verifique se o código $\theta\{.\}$ abaixo é UD:

Mensagem	Palavra-código s_i associada a x_i por $s_i = heta\{x_i\}$
x_0	0
x_1	010
x_2	01
x_3	10

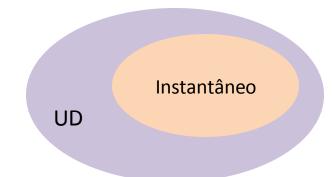
Como decodificar a sequência 010?

- x_1 ?
- x_2x_0 ?
- x_0x_3 ?

A sequência 010 poderia corresponder a qualquer uma das três sequências de mensagens. Portanto $\theta\{.\}$ não é UD.

- A ambiguidade do código do Exemplo 9 talvez pudesse ser resolvida se aguardássemos a recepção de bits adicionais, mas tal tempo de espera é indesejável, dada a constante busca por velocidade de decodificação (é desejável que o receptor seja capaz de decodificar os dados à medida que os mesmos são recebidos).
- Uma maneira de assegurar que um código seja UD e que nenhum tempo de espera seja necessário para a correta decodificação é utilizar códigos denominados <u>Prefixos</u> ou <u>Instantâneos</u>.
- A denominação "instantâneo" decorre de não haver necessidade, para tais códigos, de aguardar a recepção de bits adicionais para que se resolva ambiguidades.
- Um código instantâneo ou prefixo pode ser decodificado sem referência a palavras-código futuras, porque o final de uma palavra-código é imediatamente reconhecido no decodificador.

- Todos os códigos instantâneos são UD, mas nem todos os códigos UD são instantâneos. Ou seja, o conjunto dos códigos instantâneos é um subconjunto do conjunto dos códigos UD.
- Um código é chamado Instantâneo se nenhuma palavra-código é prefixo de nenhuma outra palavra-código pertencente ao código.



Conceito de prefixo:

Sejam as sequências α_a , α_b e α_c formadas pela justaposição de, respectivamente, N_a , N_b e N_c palavras-código s_i , pertencentes ao código $\theta\{\,.\,\}$, sendo $N_a=N_b+N_c$ um número qualquer de palavras-código. Dizemos que α_b é prefixo de α_a , se α_a puder ser representada por $\alpha_b\alpha_c$, para alguma sequência α_c denominada sufixo.

Exemplo 10: Verifique se o código $\theta\{.\}$ abaixo é instantâneo:

Mensagem	Palavra-Código s_i associada a x_i por $s_i = heta\{x_i\}$
x_0	10
x_1	00
x_2	11
x_3	110

Como 11 é prefixo de 110, θ { .} não é instantâneo.

No entanto, não podemos afirmar que não seja UD, pelo fato de não ser instantâneo.

UD

Instantâneo

Teste para UD

Seja um código $\theta\{.\}$ com alfabeto $A=\{\alpha_0,\alpha_1,...,\alpha_{D-1}\}$ e conjunto imagem $S=\{s_i\}=\{s_0,s_1,...,s_{M-1}\}$. Para testar se $\theta\{.\}$ é UD, constrói-se a sequência de conjunto $S_0,S_1,...$ da seguinte maneira:

- 1. S_0 é o próprio conjunto imagem $S = \{s_i\} = \{s_0, s_1, ..., s_{M-1}\}$.
- 2. Para definir S_1 , forma-se a partir de S_0 o conjunto **P** de todos os pares $s_i s_j$ de palavras-código, $s_i \neq s_j$ possíveis de serem formados por justaposição de duas palavras-código distintas pertencentes ao conjunto S_0 :

	s_0	s_1		s_{M-1}
s_0	-	S_0S_1		S_0S_{M-1}
S_1	S_1S_0	-	•••	S_1S_{M-1}
			-	
S_{M-1}	$S_{M-1}S_0$	$S_{M-1}S_1$		-

3. Se a palavra-código $s_i \in S_0$ é prefixo da palavra-código $s_j \in S_0$, i.e. $s_j = s_i \sigma$, então o sufixo σ é um elemento do conjunto S_1 , i.e. $\sigma \in S_1$.

Executa-se a verificação $s_j=s_i\sigma$ para todos os elementos de **P** até que todos os sufixos sejam atribuídos ao conjunto $S_1=\{\alpha_0,\alpha_1,\dots\}$, onde cada sequência α_k de caracteres de A é um sufixo originado pelo resultado positivo do teste $s_i=s_i\sigma$.

- 4. Para definir S_n , n > 1, compara-se S_0 e S_{n-1} de modo bidirecional:
 - I) Se uma palavra-código $s_i \in S_0$ é prefixo de uma sequência $\alpha_j \in S_{n-1}$, tal que $\alpha_i = s_i \sigma$, então o sufixo $\sigma \in S_n$.
 - II) Se uma sequência $\alpha'_j \in S_{n-1}$ é prefixo de uma palavra-código $s'_i \in S_0$ tal que $s'_i = \alpha'_i \sigma'$, então o sufixo $\sigma' \in S_n$.
- 5. Define-se tantos conjuntos S_n até um valor de n tal que $S_n = \{\emptyset\}$ ou até um valor de n tal que $S_n = S_{n-1}$.
- 6. O código $\theta\{.\}$ é UD se e somente se **nenhum** dos conjuntos da sequência de conjuntos $S_1, S_2,...$ contenha uma palavra-código que pertença ao conjunto S_0 .

Exemplo 11: Verifique se o código $\theta\{.\}$ abaixo, com alfabeto $A=\{a,b,c,d,e\}$ é instantâneo e/ou UD.

Mensagem	Palavra-Código s_i associada a m_i por $s_i = heta\{m_i\}$
x_0	a
x_1	\boldsymbol{c}
x_2	ad
x_3	abb
x_4	bad
x_5	deb
x_6	bbcde

Solução:

S_0	S_1	S_2	S_3	S_4	S_5	S_6	S ₇	S_8
а	d	eb	de	b	ad	d	eb	{Ø}
С	bb	cde			bcde			
ad								
abb								
bad								
deb								
bbcde								

Visto que $ad \in S_5$ e $ad \in S_0$, logo $\theta\{.\}$ não é UD.

Note que poderíamos ter encerrado o procedimento ao obter S_5 quando, então, já temos elementos suficientes para decidir que $\theta\{.\}$ não é UD.

Exemplo 12: Verifique se os códigos $\theta_I\{.\}$, $\theta_{II}\{.\}$ e $\theta_{III}\{.\}$ abaixo, com alfabeto $A=\{0,1\}$ são instantâneos e/ou UDs.

 θ_I {.} Não é instantâneo, nem UD.

S_0	S_1	S_2
1	0	0
00		1
01		
10		

 $\theta_{II}\{\,.\,\}$ Não é instantâneo, mas é UD.

S_0	S_1	S_2
0	1	11
01	11	1
011		
111		

 $\theta_{III}\{.\}$ Instantâneo.

S_0	S_1
0	{Ø}
10	
110	
111	

Teorema da Codificação de Fonte (Noiseless Coding Theorem)

"Seja uma variável aleatória discreta X com espaço de amostras definido pelo conjunto $\Omega = \{x_i\} = \{x_0, x_1, ..., x_{M-1}\}$ de M eventos estatisticamente independentes m_i , com probabilidade de ocorrência p_i , i=0,1,...,M-1.

Então é possível construir um <u>código Instantâneo</u> $\theta\{.\}$ com um conjunto de palavras-código $S=\{s_i\}=\{s_0,s_1,\ldots,s_{M-1}\}$ formadas a partir do alfabeto $A=\{a_0,a_1,\ldots,a_{D-1}\}$, tal que o conjunto $L=\{l_i\}=\{l_0,l_1,\ldots,l_{M-1}\}$ dos tamanhos das palavras-código respectivas em S satisfaça à desigualdade

$$\frac{H(X)}{\log_2 D} \le \bar{L} \le \frac{H(X)}{\log_2 D} + 1$$

onde:

H(X) é a Entropia X da fonte e

 \overline{L} é o tamanho médio das palavras-códigos, dado por $\overline{L} = \sum_{i=0}^{M-1} p_i l_i$ "

Teorema da Codificação de Fonte (Noiseless Coding Theorem)

O Teorema da Codificação de Fonte (TCF) garante a viabilidade teórica de implementação de códigos instantâneos D-ários, cujo tamanho médio dos símbolos pode ser reduzido a um valor tão pequeno quanto o valor da Entropia H(X) da fonte, ou, se impossível, pelo menos a um valor menor que H(X) + 1.

Uma decorrência do TCF é a definição da Eficiência de Codificação η dada por

$$\eta = \frac{H(X)}{\overline{L}log_2D}$$

• Um código é **Absolutamente Ótimo** (matched to the source - casado com a fonte) quando $\eta=1.0$, isto é, quando

$$\overline{L} = \frac{H(X)}{\log_2 D}$$

• Um código é Quase Absolutamente Ótimo quando

$$\frac{H(X)}{\log_2 D} < \bar{L} \le \frac{H(X)}{\log_2 D} + 1$$

Tomemos como exemplo o código estudado no Exemplo 7, em que:

$$H(X) = 1.75 \left[\frac{bits}{mensagem} \right], \quad \bar{L}(\theta) = 1.75 \left[\frac{bits}{simbolo} \right] e log_2 D = log_2 2 = 1$$

Para este código

$$\bar{L} = \frac{H(X)}{\log_2 D}$$

Portanto, o código é Absolutamente Ótimo.

• Embora o TCF nos garanta que é possível obter códigos instantâneos com \overline{L} . tão pequeno quanto a própria Entropia H(X) da fonte, nenhuma informação é dada sobre como construir tais códigos.

Códigos Ótimos - Códigos de Huffman -

- A construção de códigos ótimos baseia-se na minimização de $\overline{L}=\sum_{i=0}^{M-1}p_il_i$.
- Um código instantâneo que minimize \overline{L} é denominado de <u>Código Ótimo</u>.
- Existe um teorema que prova que se um código ótimo $\theta^*\{.\}$ resulta em $\overline{L^*}$, é impossível existir um outro código instantâneo $\theta\{.\}$ com tamanho médio \overline{L} tal que $\overline{L} < \overline{L^*}$ [Ash].
- Um Código Ótimo D-ário cujas palavras-código $S = \{s_i\} = \{s_0, s_1, ..., s_{M-1}\}$ são formadas a partir do alfabeto $A = \{a_0, a_1, ..., a_{D-1}\}$ satisfaz as seguintes propriedades (se o código for binário cada dígito D-ário é um bit) [Cover]:
- 1. Palavras-código com maior probabilidade possuem menor tamanho.
- 2. As D palavras-código menos prováveis possuem o mesmo tamanho.
- 3. As D palavras-código menos prováveis diferem somente no último dígito D-ário.

Códigos Ótimos - Códigos de Huffman -

• **Exemplo 13**: Verifique se o código $\theta\{.\}$ abaixo é Ótimo.

Mensagem	p_i	Palavra-Código s_i associada a x_i por $s_i = \theta\{x_i\}$	
x_0	0.6	0	
x_1	0.2	100	
x_2	0.1	101	
x_3	0.04	1101	
x_4	0.06	1110	

- Solução:
- As propriedades 1 e 2 são satisfeitas.
- A propriedade 3 não é satisfeita: x_3 e x_4 não diferem somente no último bit.
- Portanto, $\theta\{.\}$ não e ótimo.

Método para Construção de Códigos Ótimos

Para a construção de $\theta\{.\}$ efetua-se:

- Seja, inicialmente, k = j = 0.
- 1. Organizar as probabilidades p_i de alto a baixo em uma coluna em ordem decrescente de valor, denominada Coluna k.
- 2. Somar as D menores probabilidades na Coluna k e transferi-las para a próxima coluna (à direita), denominada Coluna k+1, obedecendo a ordem decrescente. As demais probabilidades da Coluna k são transferidas inalteradas para a Coluna k+1.
- 3. Incrementar k de 1 e repetir 1 a 3 até restarem somente D probabilidades na Coluna k+1, então denominada Coluna j.
- 4. Na Coluna j, atribuir a palavra-código representada pelo caractere a_0 à maior probabilidade, atribuir a palavra-código representada pelo caractere a_1 , à segunda maior probabilidade, e assim sucessivamente até atribuir a palavra-código representada pelo caractere a_{D-1} à menor probabilidade.

Método para Construção de Códigos Ótimos

- 5. Localizar na Coluna j+1, imediatamente à esquerda da Coluna j, quais as D probabilidades geradoras que, ao serem somadas, resultaram na probabilidade gerada na Coluna j. Atribuir às D probabilidades geradoras na Coluna j+1 a palavra-código já atribuída à probabilidade gerada na Coluna j. As probabilidades não-geradoras na Coluna j+1 são atribuídas as palavras-código já atribuídas respectivas probabilidades não-geradas por soma na Coluna j.
- 6. Na Coluna j+1, as palavras-códigos já atribuídas em 5 as D probabilidades geradoras, justapor a palavra-código representada pelo caractere a_0 aquela geradora de maior probabilidade, justapor a palavra-código representada pelo caractere a_1 , aquela geradora de segunda maior probabilidade, e assim sucessivamente até justapor a palavra-código representada pelo caractere a_{D-1} a palavra-código geradora de menor probabilidade.
- 7. Incrementar *j* de 1 e repetir 5 a 7 até que todas as colunas tenham palavrascódigo associadas as probabilidades nelas contidas.
- 8. Após a execução de 7, o Código de Huffman estará definido na coluna mais a esquerda.

Códigos Ótimos - Códigos de Huffman

- **Exemplo 14**: Seja uma fonte de informação representada pela variável aleatória discreta X com espaço de amostras definido pelo conjunto $\Omega = \{x_i\} = \{x_0, x_1, ..., x_{M-1}\}$ de M = 6 eventos estatisticamente independentes m_i com probabilidade de ocorrência p_i , i = 0,1,...,M-1, conforme tabela abaixo.
 - a) Determine um código ótimo $\theta\{.\}$ cujo conjunto de palavras-código $S = \{s_i\} = \{s_0, s_1, ..., s_{M-1}\}$ é formado a partir do alfabeto $A = \{0,1\}$.
 - b) Determine a eficiência de θ { . }.
 - c) Determine se $\theta\{.\}$ é absolutamente ótimo ou quase absolutamente ótimo.

Mensagem	p_i
x_0	0.4
x_1	0.3
x_2	0.1
x_3	0.1
x_4	0.06
x_5	0.04

Códigos Ótimos - Códigos de Huffman

0.4	1	0.4 1	0.4 1	0.4 1	→ 0.6 0
0.3	00	0.3 00	0.3 00	0.3 00	0.4 1
0.1	011	0.1 011	0.2 010	0.3 01	
0.1	0100	0.1 0100	0.1 011		
0.06	01010	0.1 0101			
0.04	01011				

Mensagem	p_i	s_i
x_0	0.4	1
x_1	0.3	00
x_2	0.1	011
x_3	0.1	0100
x_4	0.06	01010
x_5	0.04	01011

$$H(X) = -\sum_{i=0}^{M-1} p_i log_2(p_i) = 2.14 [bits/mensagem]$$

$$\bar{L} = \sum_{i=0}^{M-1} p_i l_i = 2.20 \ [bits/simbolo]$$
 $\eta = \frac{H(X)}{\bar{L}} = \frac{2.14}{2.20} = 97.3\%$

Visto que $\frac{H(X)}{\log_2 D} < \overline{L} \le \frac{H(X)}{\log_2 D} + 1$, $\theta\{.\}$ é <u>quase absolutamente ótimo</u>.

Extensão de Fonte

A observação do Teorema da Codificação de Fonte permite constatar que existe um descasamento residual fonte-código que pode chegar a quase 1 bit.

Pode-se reduzir este descasamento por palavra-código diluindo-o ao longo de várias palavras-código através da operação de Extensão da Fonte, que pode ser assim descrita:

Seja um sistema de codificação no qual, ao invés de associarmos uma palavra-código $s_i \in \mathbf{S}$ a cada mensagem $x_i \in \mathbf{\Omega}$, tomamos uma sequência de J observações independentes de X (uma "super mensagem") e atribuímos uma "super palavra-código" composta por J palavras-código s_i à seqüência de J mensagens x_i .

Nesta situação o TCF pode ser reescrito como [Cover]:

 $H(X) \le \overline{L}_J < H(X) + \frac{1}{J}$, Portanto, quanto maior o tamanho J das "super palavras-código" geradas por extensão de fonte, menor o descasamento residual 1/J.

Exemplo 3.14: Seja uma fonte de informação representada pela variável aleatória discreta X, com espaço de amostras definido pelo conjunto $\Omega = \{x_i\} = \{x_0, x_1, \dots, x_{M-1}\}$ de M = 2 eventos estatisticamente independentes x_i com probabilidade de ocorrência p_i , $i = 0,1,\dots,M-1$, conforme tabela abaixo.

Mensagem	p_{i}
x_0	0.6
x_1	0.4

Para reduzir o descasamento residual o sistema de codificação de fonte aplica o processo de extensão de fonte de ordem J=2.

- a) Determine um Código Ótimo $\mathbf{\theta}\{\cdot\}$ cujo conjunto de palavras-código $\mathbf{S} = \{s_i\} = \{s_0, s_1, \dots, s_{M-1}\}$ é formado a partir do alfabeto $\mathbf{A} = \{0,1\}$ (código binário).
- b) Determine a Eficiência do código obtido em a).

Solução:

A extensão da fonte de ordem J = 2 resulta no seguinte conjunto de "super-mensagens":

"Super – Mensagem" $x_i x_j$,	p_{ij}
$i, j = 0, 1, \cdots, M-1$	
x_0x_0	$0.6 \times 0.6 = 0.36$
x_0x_1	$0.6 \times 0.4 = 0.24$
x_1x_0	$0.4 \times 0.6 = 0.24$
x_1x_1	$0.4 \times 0.4 = 0.16$

Figura 3.3: Procedimento para construção do Código de Huffman do Exemplo 3.14. Portanto, o código $\Theta\{\cdot\}$ binário resultante é

"Super-Mensagem"	p_{ij}	"Super-símbolo" s_{ij} associado a $x_i x_j$ por	
$x_i x_j$		$s_{ij} = \mathbf{\Theta}\{x_i x_j\}$	
x_0x_0	0.36	00	
x_0x_1	0.24	01	
x_1x_0	0.24	10	
x_1x_1	0.16	11	

$$H(X) = -\sum_{i,j=0}^{M-1} p_{ij} \log_2(p_{ij}) = 1.94 \ [bits/mensagem]$$
 (3.15)

$$\overline{L}(\mathbf{0}) = \sum_{i,j=0}^{M-1} p_{ij} \ell_{ij} = 0.36 \times 2 + 0.24 \times 2 + 0.24 \times 2 + 0.16 \times 2 = 2.00 \ [bits/simbolo]$$
 (3.16)

$$\eta = \frac{H(X)}{\overline{L}} = \frac{1.94 \left[bits / mensagem \right]}{2.00 \left[bits / simbolo \right]} = 97.0\%$$
(3.17)

Lempel - Ziv

3.3 O Algoritmo Lempel–Ziv

O Código de Huffman resulta em um código instantâneo que caracteriza-se por minimizar \overline{L} . Para construir um Código de Huffman adequado a uma fonte sem memória é necessário conhecer as probabilidades de ocorrência de cada mensagem.

Em contraste com o Código de Huffman, o algoritmo Lempel-Ziv é independente das estatísticas da fonte. Em função disto, o algoritmo Lempel-Ziv é enquadrado na classe de Algoritmos Universais para Codificação de Fonte. Neste estudo abordaremos apenas o caso em que a saída da fonte é uma sequência de dígitos binários.

No algoritmo Lempel-Ziv a sequência de bits proveniente da fonte é decomposta em blocos de tamanho variável denominados <u>frases</u>, as quais fazem o papel das mensagens só que de tamanho não fixo.

Uma nova frase é introduzida no conjunto $\mathbf{F} = \{\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_N\}$ de N frases \mathbf{f}_i , $i = 1, \dots, N$, toda vez que um bloco de bits proveniente da fonte difere de alguma frase prévia já existente em \mathbf{F} no último bit., quando, então, N é incrementado de 1. Esta frase prévia já existente em \mathbf{F} que dá origem à nova frase é denominada de <u>frase originadora</u>, e é representada por $\mathbf{f}_o \in \mathbf{F}$. Assim, uma nova frase originada da respectiva $\mathbf{f}_o \in \mathbf{F}$ é idêntica à originadora exceto por possuir um bit adicional.

As frases assim formadas são listadas em um dicionário, o qual armazena a localização das frases existentes.

A codificação das frases em palavras-código consiste em especificar no campo de bits iniciais da palavra-código a localização (em base binária) da frase originadora e justapor a este campo de bits o último bit da nova frase.

Por exemplo, suponhamos que a fonte de informação emita a sequência binária x(n) = 1010110100100111010100001100111010100011011.

O Algoritmo Lempel-Ziv decompõe x(n) no conjunto \mathbf{F} de frases obedecendo a regra que cada nova frase difere da respectiva $\mathbf{f}_o \in \mathbf{F}$ no último bit: $\mathbf{F} = \{1, 0, 10, 11, 01, 00, 100, 111, 010, 1000, 011, 001, 110, 101, 10001, 1011\}$.

Observe que cada frase obtida de x(n) é o resultado da concatenação da respectiva $f_a \in \mathbb{F}$ com um novo bit proveniente da fonte.

Para codificar as frases (isto é, para definir as palavras-código), o Algoritmo Lempel-Ziv constrói um dicionário conforme mostrado na Tabela 3.2.

Índice	da	Localização	F	Palavra-Código
Frase		no Dicionário		
1		0001	1	00001
2		0010	0	00000
3		0011	10	00010
4		0100	11	00011
5		0101	01	00101
6		0110	00	00100
7		0111	100	00110
8		1000	111	01001
9		1001	010	01010
10		1010	1000	01110
11		1011	011	01011
12		1100	001	01101
13		1101	110	01000
14		1110	101	00111
15		1111	10001	10101
16			1011	11101

Tabela 3.2: Dicionário resultante da sequência x(n) e formação das palavras-código.

As frases no dicionário são numeradas em ordem ascendente, começando com 1 até o número de frases resultantes da decomposição de x(n), no caso, 16.

As palavras-código são determinadas listando no dicionário em base binária a localização da $f_o \in \mathbf{F}$ que origina a nova frase e justapondo a este campo de bits o último bit da nova frase. Inicialmente, a localização 0000 é utilizada para codificar frases que não apareceram anteriormente.

O decodificador no receptor digital constrói uma tabela idêntica à usada no codificador do transmissor a partir das palavras-código recebidas e recupera x(n) lendo a coluna \mathbf{F} de alto a baixo. Por exemplo, quando o receptor recebe a palavra-código 01010 o algoritmo consulta a localização 0101 e verifica que a frase originadora é 01. Portanto, justapondo o último bit da palavra-código à frase originadora obtemos a nova frase: 010. Obviamente, quando o receptor recebe a palavra-código 01010, a palavra-código 00101 correspondente à decodificação da frase 01 já foi recebida previamente, o que viabiliza a consulta recursiva ao dicionário.

É importante observar que a sequência x(n) proveniente da fone possui 44 bits e a codificação resultante da Tabela 3.2 gerou um conjunto de 16 palavras-código de 5 bits cada, o que implica em 80 bits enviados através do canal de transmissão. Então, o volume de bits transmitido foi AUMENTADO ao invés de diminuído! No entanto, esta ineficiência é devida ao fato de que x(n) tem um tamanho muito pequeno. Este tamanho foi escolhido para os fins didáticos de possibilitar a compreensão do Algoritmo Lempel-Ziv. Na prática, em operação real, o algoritmo necessita, em geral, da ordem de 10^4 bits na sequência x(n)

para que este tenha alguma eficiência. Obviamente seria dificil tornar didático um exemplo com 10^4 bits em x(n)!

Como o algoritmo seleciona o número N total de frases a serem armazenadas em \mathbf{F} ? Em geral, não importando quão grande é o volume de memória que o sistema digital dispõe para armazenar \mathbf{F} , se nenhuma providência adicional for tomada, em algum momento do processo de codificação teremos problemas de *overflow* de memória. Para resolver este problema, o codificador e o decodificador de fonte devem possuir um algoritmo auxiliar que remove de \mathbf{F} frases geradoras \mathbf{f}_o em desuso e as substitui por novas que vão surgindo de acordo com o desenrolar temporal da sequência de informação emitida pela fonte.

O Algoritmo Lempel-Ziv é largamente utilizado em aplicativos para compressão de arquivos como o Compress do UNIX, o PkZip do DOS e o Winzip do Windows.