Evolving Weights in a Fixed Network

David Montana and Lawrence Davis (1989) took the first approach—
evolving the weights in a fixed network. That is, Montana and Davis were
using the GA instead of back-propagation as a way of finding a good set of
weights for a fixed set of connections. Several problems associated with
the back-propagation algorithm (e.g., the tendency to get stuck at local
optima in weight space, or the unavailability of a “teacher” to supervise
learning in some tasks) often make it desirable to find alternative weight-
training schemes.

Montana and Davis were interested in using neural networks to classify
underwater sonic “lofargrams” (similar to spectrograms) into two classes:
“interesting” and “not interesting.” The overall goal was to “detect and
reason about interesting signals in the midst of the wide variety of acous-
tic noise and interference which exist in the ocean.” The networks were to
be trained from a database containing lofargrams and classifications made
by experts as to whether or not a given lofargram is “interesting.” Each
network had four input units, representing four parameters used by an
expert system that performed the same classification. Each network had
one output unit and two layers of hidden units (the first with seven units
and the second with ten units). The networks were fully connected feed-
forward networks—that is, each unit was connected to every unit in the
next higher layer. In total there were 108 weighted connections between
units. In addition, there were 18 weighted connections between the non-
input units and a “threshold unit” whose outgoing links implemented the
thresholding for each of the non-input units, for a total of 126 weights to
evolve.

The GA was used as follows. Each chromosome was a list (or “vector”)
of 126 weights. Figure 2.17 shows (for a much smaller network) how the
encoding was done: the weights were read off the network in a fixed or-
der (from left to right and from top to bottom) and placed in a list. Notice
that each “gene” in the chromosome is a real number rather than a bit.
To calculate the fitness of a given chromosome, the weights in the chro-
mosome were assigned to the links in the corresponding network, the
network was run on the training set (here 236 examples from the database
of lofargrams), and the sum of the squares of the errors (collected over all
the training cycles) was returned. Here, an “error” was the difference be-
tween the desired output activation value and the actual output activation
value. Low error meant high fitness.



Network:

Chromosome: (03 -04 02 08 -0.3 0.1 0.7 -0.3)

Figure 2.17 Illustration of Montana and Davis's encoding of network weights into a list
that serves as a chromosome for the GA. The units in the network are numbered for later
reference. The real-valued numbers on the links are the weights.

Before mutation After mutation

(0.3 04 02 08 -03 0.1 0.7 -0.3) (0.3 0.4 0.2 0.6 —03 09 0.7 —0.1)

Figure 2.18 Illustration of Montana and Davis’s mutation method. Here the weights on
incoming links to unit 5 are mutated.

An initial population of 50 weight vectors was chosen randomly, with
each weight being between —1.0 and +1.0. Montana and Davis tried a
number of different genetic operators in various experiments. The muta-
tion and crossover operators they used for their comparison of the GA
with back-propagation are illustrated in figures 2.18 and 2.19. The mu-
tation operator selects n non-input units and, for each incoming link to
those units, adds a random value between —1.0 and +1.0 to the weight
on the link. The crossover operator takes two parent weight vectors and,
for each non-input unit in the offspring vector, selects one of the parents
at random and copies the weights on the incoming links from that parent
to the offspring. Notice that only one offspring is created.

The performance of a GA using these operators was compared with
the performance of a back-propagation algorithm. The GA had a popu-
lation of 50 weight vectors, and a rank-selection method was used. The
GA was allowed to run for 200 generations (i.e., 10,000 network evalua-
tions). The back-propagation algorithm was allowed to run for 5000 iter-
ations, where one iteration is a complete epoch (a complete pass through
the training data). Montana and Davis reasoned that two network evalua-



Parent 1 Parent 2

(0.3 04 02 08 0.3 -0.1 0.7 -0.3) (0.7 09 03 04 08 -0.2 0.1 0.5)

0.7 =09 02 04 -03 02 0.7 0.5)

Figure 2.19 Tllustration of Montana and Davis’s crossover method. The offspring is created
as follows: for each non-input unit, a parent is chosen at random and the weights on the
incoming links to that unit are copied from the chosen parent. In the child network shown
here, the incoming links to unit 4 come from parent 1 and the incoming links to units 5 and
6 come from parent 2.

tions under the GA are equivalent to one back-propagation iteration, since
back-propagation on a given training example consists of two parts—
the forward propagation of activation (and the calculation of errors at
the output units) and the backward error propagation (and adjusting of
the weights). The GA performs only the first part. Since the second part
requires more computation, two GA evaluations takes less than half the
computation of a single back-propagation iteration.

The results of the comparison are displayed in figure 2.20. Here one
back-propagation iteration is plotted for every two GA evaluations. The x
axis gives the number of iterations, and the y axis gives the best evaluation
(lowest sum of squares of errors) found by that time. It can be seen that
the GA significantly outperforms back-propagation on this task, obtaining
better weight vectors more quickly.

This experiment shows that in some situations the GA is a better train-
ing method for networks than simple back-propagation. This does not
mean that the GA will outperform back-propagation in all cases. It is also
possible that enhancements of back-propagation might help it overcome
some of the problems that prevented it from performing as well as the
GA in this experiment. Schaffer, Whitley, and Eshelman (1992) point out



0.15 1

0.12 1

Best Evaluation

0.09 A1

0.06
0 2e+03 4de+03 6e+03 8e+03 le+04

[terations

Figure 2.20 Montana and Davis’s results comparing the performance of the GA with back-
propagation. The figure plots the best evaluation (lower is better) found by a given iteration.
Solid line: genetic algorithm. Broken line: back-propagation. (Reprinted from Proceedings of
the International Joint Conference on Artificial Intelligence; © 1989 Morgan Kaufmann Publish-
ers, Inc. Reprinted by permission of the publisher.)

that the GA has not been found to outperform the best weight-adjustment
methods (e.g., “quickprop”) on supervised learning tasks, but they pre-
dict that the GA will be most useful in finding weights in tasks where
back-propagation and its relatives cannot be used, such as in unsuper-
vised learning tasks, in which the error at each output unit is not available
to the learning system, or in situations in which only sparse reinforce-
ment is available. This is often the case for “neurocontrol” tasks, in which
neural networks are used to control complicated systems such as robots
navigating in unfamiliar environments.



