Reference Materials
The Internet.  Use a net browser such as Netscape. Do a search on “genetic

algorithms.” You will find more information than you care to find. The
search may be narrowed by specifying additional search words. Some of
the better web sites to start exploring include

http://www.aic.nrl.navy.mil
http://alife.santafe.edu

Also available from the internet 1s The Hitch-Hiker's Guide to Evolutionary
Computation (Heitkotter and Beasley, 1994). This excellent up-to-date
resource lists everything from where to get free software to many frequently
asked questions (FAQ) about evolutionary programming.

Articles. Manv of the maior scientific and eneineering journals have pub-
lished introductory articles on genetic algorithms.,

Holland’s article in Scientific American (Holland, 1992).

Books. 1f you are interested in the theory of genetic algorithms,
Holland (1975), Goldberg (1989), Mitchell (1996),
Whitley (1993), and Schwefel (1995) will satisty you.
The other books [including Goldberg (1989)] are
more application oriented.

Journals.  Several journals publish articles on genetic algorithms,
Some include: Evolutionary Computation
IEEE Expert Intelligent Systems & Their Applications
IEEE Transactions on Systems, Man, and Cybernetics
BioSystems
Complex Systems
Machine Learning



Short Courses.  Several institutions offer short courses on genetic algo-
rithms, including Georgia Institute of Technology and UCLA. In addition,
many conferences offer short courses and tutorials on various aspects of
genetic algorithms.

Software. There i1s a lot of free software available. For the latest, consult
Heitkotter and Beasley (1994). Some examples include:

MATLAB Genetic Algorithm Toolbox
Genetic Search Implementation System (GENESIS)

Genetic Algorithm for Numerical Optimization for Constrained Prob-
lems (GENOCOP)

Better to Use Genetic Systems (BUGS)
GENEsYs
Tool Kit for Genetics-Based Applications (TOLKIEN)

Conferences. There are several conferences each year devoted to evolu-
tionary programming, including

Conference on Genetic Programming

IEEE Conference on Evolutionary Computation
[nternational Conference on Genetic Algorithms
Annual Conference on Evolutionary Programming
Foundations of Genetic Algorithms

Parallel Problem Solving from Nature



PSEUDOCODES

Some guidelines for reading the pseudocode:

* A matrix is a variable with all capital letters
* A vector is a variable with the first letter capitalized

* A scalar i1s all lowercase letters

A function provided by the user is in boldface
* A function described by pseudocode is italicized
* % indicates a program comment

User-provided subroutines are described below:

* random(r, c)—generates an r X ¢ matrix of uniformly distributed
random numbers.

* round(*)—rounds numbers to nearest integer.
* costfunction(CHROMOSOMES)—returns a column vector with the

cost associated with each chromosome or row in the matrix CHRO-
MOSOMES.

* sort(Cost, CHROMOSOMES)—sorts the Cost vector and associated
chromosomes from lowest cost in row 1 to highest cost in the last row.
It also truncates the vector and matrix to the first popsize rows.

* min—{finds the minimum value of the vector.
* mean—Ifinds the average value of the vector.
* std—finds the standard deviation of the elements in the vector.

* roundup—rounds numbers to next highest integer.

Most math packages provide some form of the above functions. Canned
subroutines for programming languages are generally available for most
of these functions as well.

The main genetic algorithm and pairing function are the same for the bi-
nary and continuous versions. However, the mating and mutation functions
are quite different, so two versions are provided.




Pseudocode for a Binary Genetic Algorithm

Y%o____________

% Define variables

Y/

maxiterations =7 % maximum number of iterations

ipopsize =7 % population size of generation O
popsize=?Xipopsize % population size of generations 1 through. ..
keep="7Xpopsize % number of chromosomes kept for mating
bits=? % total number of bits in a chromosome
mutaterate ="? % mutation rate

%

%0 Create the initial population, evaluate costs, and sort
O
CHROMOSOMES =round(random(ipopsize,bits))

% matrix of random 1s & Os

Y%

9 Let the generations begin!

%0 Cost - vector containing the costs

% sort - sorts & truncates costs & chromosomes

Do oo

gen#=0 % initial generation

quit=‘no’ % convergence check

while gen#<maxiterations & quit= ‘no’

gen#=gen#+ 1 % increment the generation number

Cost=costfunction(CHROMOSOMES)
[Cost, CHROMOSOMES]=sort(Cost, CHROMOSOMES)

%o

% Evaluate cost statistics

e R T E e

Mincost(gen#)=min(Cost) % minimum cost

Meancost(gen#)=mean(Cost) % mean cost

Stndcost(gen#)=std(Cost) % standard deviation of cost
P T e SR =

% The chromosomes are paired and offspring are produced

Yo L

[Mom Dad]=pair(CHROMOSOMES,Cost,keep,popsize)

CHROMOSOMES =matebin(Mom,Dad, CHROMOSOMES ,keep,
popsize,bits)




Yo
% mutate the population with (popsize X N X mutaterate) mutations

CHROMOSOMES =mutatebin(CHROMOSOMES ,mutaterate,
popsize,bits)

Y%
% Check for convergence

if Mincost(gen#)< ? and/or Meancost(gen#)<?
and/or Stndcost(gen#)<<?=-quit=""yes’
end



Pseudocode for Pairing

function [Mom,Dad]=pair(CHROMOSOMES,Cost,keep,popsize)

replacements =(popsize-keep)/2 % # CHROMOSOMES needing
% replaced
( n

Zreplaccmcnts
r=1 r

|cost(rn)|
Pl’Ob(H) = < Zrcplacemems

r=1

|cost(r)|
cost(n) — min {cost(replacements + 1)}

\ zmp]a“’mcms |cost(r) — min {cost(replacements + 1)}|

r=1

% cummulative probabilities
Odds=[0, Prob(1), Prob(1)+Prob(2), ..., S_rPem" prob(n)]

n=1

Pickl=random(1,replacements) % vector of random numbers for Mom
Pick2=random(1,replacements) % vector of random numbers for Dad

Yo

% finds the two mates

Do _

ic=1 % initialize counter

while ic<<replacements % counter must be less than
% replacement number

Yo

% when one of the random Picks falls inside a cummulative probability
% bin, the chromosome associated with that bin is selected as a parent

for id=2:keep+1

if Pick1(ic)<Odds(id) & Pick1(ic)>0Odds(id—1) — Mom(ic)=1d—1
if Pick2(ic)<Odds(id) & Pick2(ic)>0dds(id—1) — Dad(ic)=1d—1
end _

ic=ic+1 | % increment counter

end



Pseudocode for Binary Mating

function CHROMOSOMES =matebin(Mom,Dad, CHROMOSOMES,
keep,popsize,bits)

~ _

% selects a crossover point

% roundup rounds to next highest integer

%

% row indx contains first offspring

% row indx-+ 1 contains second offspring

% mom - vector containing row numbers of first parent
% dad - vector containing row numbers of second parent

for ic=l:popsize

indx=2X(c-1)+1

CHROMOSOMES (keep +indx,l —popsize)=
[CHROMOSOMES(Mom(ic),1 —Xpoint(ic)),
CHROMOSOMES (Dad(ic),Xpoint(ic)+1 —popsize)]

CHROMOSOMES (keep+indx+ 1,1 —popsize)=
[CHROMOSOMES(Dad(ic),1 —Xpoint(ic)),
CHROMOSOMES(Mom(ic),Xpoint(ic)+ 1 —popsize)]

end



Pseudocode for Binary Mutation

function CHROMOSOMES =mutatebin(CHROMOSOMES ,mutaterate,
popsize,bits)

Y%

% Inside a loop iterating over the number of mutations, a random

% bit in the population is selected and changed from a 1 to a O or

% froma O toal.

#mutations =roundup(popsize X bits X mutaterate)

% number of mutations
for ic=1—#mutations
row =roundup((popsize-2) Xrandom(1,1))+1 % random row
col=roundup((bits-2) Xrandom(1,1))+1 % random column
CHROMOSOMES(row,col) =CHROMOSOMES((row,col)—1

% mutation
end



Pseudocode for a Continuous Parameter Genetic Algorithm

/R

% Define variables

/S

popsize=?Xipopsize % population size of generations 1 through. ..
‘maxiterations=? % maximum number of iterations

1popsize =" % population size of generation 0
popsize=?Xipopsize % population size of generations 1 through. ..
keep="7Xpopsize % number of chromosomes kept for mating
pars="7? % total number of parameters in a chromosome
mutaterate =" % mutation rate

hi=? % maximum parameter value

lo=? % minimum parameter value

%o

CHROMOSOMES = (hi —lo) X random(ipopsize,bits) +1o
% matrix of random 1s & Os

%o

% Let the generations begin!

D e

gen#=0 % 1nitial generation

quit= ‘no’ % convergence check

while gen#<'maxiterations & quit=‘no’

gen#=gen#+1 % increment the generation number

Cost=costfunction(CHROMOSOMES)
[Cost, CHROMOSOMES]=sort(Cost, CHROMOSOMES)

Yo

% Evaluate cost statistics

Yo

Mincost(gen#)=min(Cost) % minimum cost
Meancost(gen#)=mean(Cost) % mean cost
Stndcost(gen#)=std(Cost) % standard deviation of cost
Yo



[Mom Dad]=pair(CHROMOSOMES,Cost,keep,popsize)
CHROMOSOMES =matecon(Mom,Dad, CHROMOSOMES keep,
popsize,pars)

CHROMOSOMES =mutatecon(CHROMOSOMES, mutaterate,popsize,
pars,hi,lo)

if Mincost(gen#)<<? and/or Meancost(gen#)<? and/or Stndcost(gen#)
<7=-quit="yes’
end



Pseudocode for Continuous Parameter Mating

function CHROMOSOMES =matecon(Mom,Dad, CHROMOSOMES,
keep,popsize,pars)

% row indx contains first offspring

%0 row Indx + 1 contains second offspring

% mom - vector containing row numbers of first parent
% dad - vector containing row numbers of second parent

for ic=1-—popsize
indx=2X(ic—1)+1
alpha=roundup{random X pars}
beta=random
CHROMOSOMES(keep+indx,alpha)
= CHROMOSOMES(Mom(ic),alpha)
— beta X[CHROMOSOMES(Mom(ic),alpha)
— CHROMOSOMES(Dad(ic),alpha)]
CHROMOSOMES(keep+indx + 1,alpha)
= CHROMOSOMES(Dad(ic),alpha)
+ beta X[CHROMOSOMES(Mom(ic),alpha)
— beta X CHROMOSOMES(Dad(ic),alpha)]
if alpha> 1 & alpha<<pars

CHROMOSOMES(keep+indx,alpha+ 1 —pars)

= CHROMOSOMES(keep+indx + 1,alpha+ 1 —pars)
CHROMOSOMES(keep—+indx+ 1,alpha+ 1 —pars)

= CHROMOSOMES (keep+indx,alpha+ 1 —pars)
end
end



Pseudocode for Continuous Parameter Mutation

function CHROMOSOMES = nmutatecon(CHROMOSOMES,maxval,
mutaterate,popsize,pars,hi,lo)

% Inside a loop iterating over the number of mutations, a random
% parameter in the population is selected and replaced by a new
% random parameter.

#mutations =roundup(popsize X pars X mutaterate) % # mutations

for ic=1—#mutations

row=roundup(popsize X random) + 1 % random row
col=roundup(pars Xrandom) % random column
CHROMOSOMES (row,col)= (hi—lo)Xrandom+lo % mutation end



