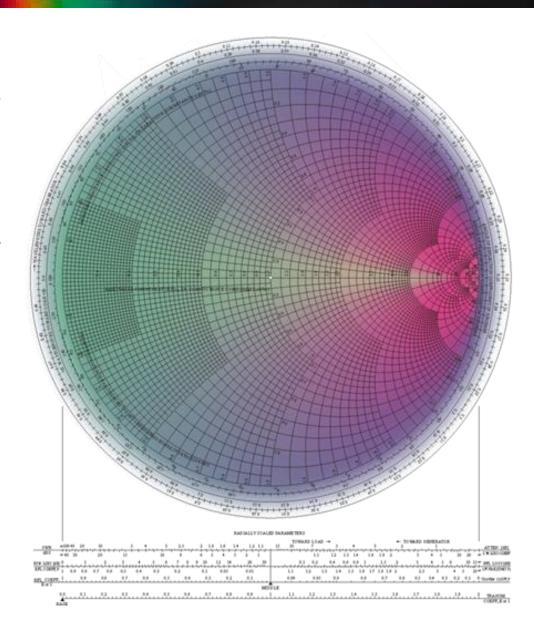
Módulo II – Linhas de Transmissão

Carta de Smith

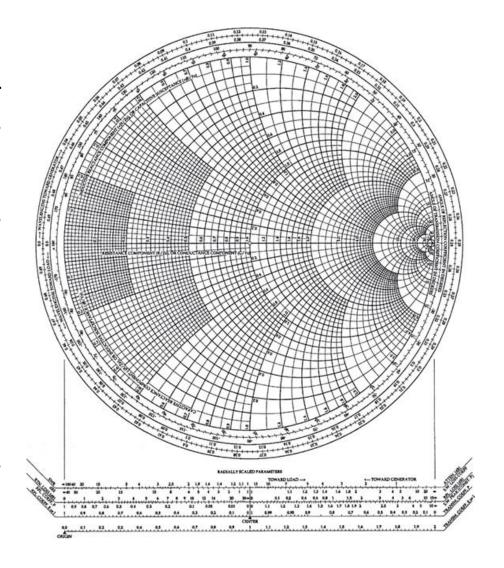
- Ferramenta gráfica para resolver problemas envolvendo linhas de transmissão e casamento de impedância.
- Foi desenvolvida em 1939 por Phillip Smith, engenheiro do Bell Telephone Labs.
- Permite visualizar os fenômenos de linhas de transmissão sem a necessidade de cálculos numéricos detalhados.



Ondas e Linhas – 2017/II Maria Cristina Felippetto De Castro

- No uso da Carta de Smith vamos assumir que a LT é sem perdas.
- A Carta de Smith pode ser entendida como dois gráficos em um:
 - O primeiro traça a impedância normalizada em qualquer ponto ao longo de uma LT.
 - O segundo traça o coeficiente de reflexão para qualquer ponto ao longo da linha.
- Dado que o coeficiente de reflexão pode ser expresso na forma polar, como $\Gamma = |\Gamma| e^{j\theta}$, então a magnitude $|\Gamma|$ é plotada como o raio a partir do centro da Carta de Smith, e o ângulo θ ($-180^{\circ} \le \theta \ge 180^{\circ}$) é medido no sentido anti-horário a partir do lado direito do diâmetro horizontal.
- Cada possível coeficiente de reflexão de $|\Gamma| \le 1$ pode ser plotado como um único ponto em uma Carta de Smith.

- A real utilidade da carta de Smith está no fato de que ela pode ser utilizada para converter coeficientes de reflexão em impedâncias (ou admitâncias) normalizadas e vice versa, utilizando os círculos de impedância (ou admitância) impressos na carta.
- Para a utilização da Carta de Smith, as impedâncias (ou admitâncias) são normalizadas em relação à impedância (ou admitância) característica da linha de transmissão.



Ondas e Linhas – 2017/II Maria Cristina Felippetto De Castro

Conforme vimos anteriormente, se uma LT sem perdas está terminada por uma impedância de carga $Z_{\rm L}$, o coeficiente de reflexão na carga pode ser expresso por

$$\Gamma_L = \frac{Z_L - Z_0}{Z_L + Z_0}$$
 , onde \mathbf{Z}_0 é a impedância característica da LT.

Normalizando \mathbf{Z}_{L} pela impedância caraterística da LT, temos

$$z_L = \frac{Z_L}{Z_0}$$
, de onde $\Gamma_L = \frac{z_L - 1}{z_L + 1} = |\Gamma_L|e^{j\theta}$

Expressando z_L em função de Γ_L em $\Gamma_L = \frac{z_L - 1}{z_L + 1} = |\Gamma_L| e^{j\theta}$, temos

$$z_L = \frac{1 + |\Gamma_L| e^{j\theta}}{1 - |\Gamma_L| e^{j\theta}}$$

Dado que $z_L=r_L+jx_L\,\mathrm{e}\,\Gamma_L=R\{\Gamma_L\}+Im\{\Gamma_L\}=\Gamma_r+j\Gamma_i$, podemos escrever a equação acima como

$$r_L + jx_L = \frac{(1 + \Gamma_r) + j\Gamma_i}{(1 - \Gamma_r) - j\Gamma_i}$$

A parte real e a parte imaginária em $r_L + jx_L = \frac{(1 + \Gamma_r) + j\Gamma_i}{(1 - \Gamma_r) - j\Gamma_i}$

podem ser separadas multiplicando o numerador e o denominador pelo complexo conjugado do denominador $((1 - \Gamma_r) + j\Gamma_i)$. Assim, obtemos

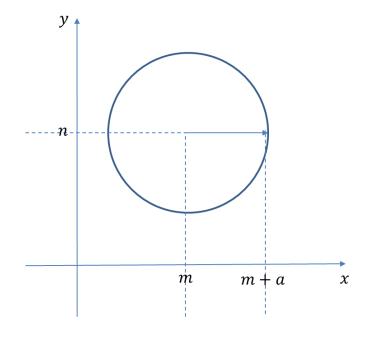
$$r_L = \frac{1 - \Gamma_r^2 - \Gamma_i^2}{(1 - \Gamma_r)^2 + {\Gamma_i}^2}$$
 $x_L = \frac{2\Gamma_i}{(1 - \Gamma_r)^2 + {\Gamma_i}^2}$

Rearranjando as equações acima, encontramos

$$\left(\Gamma_{r} - \frac{r_{L}}{1 + r_{L}}\right)^{2} + \Gamma_{i}^{2} = \left(\frac{1}{1 + r_{L}}\right)^{2} \qquad (\Gamma_{r} - 1)^{2} + \left(\Gamma_{i} - \frac{1}{x_{L}}\right)^{2} = \left(\frac{1}{x_{L}}\right)^{2}$$

que representam duas famílias de círculos no plano Γ_r , Γ_i .

Lembrando que a equação geral para um círculo de raio a, centrado em $x=m\,$ e y=n, é $(x-m)^2+(y-n)^2=a^2$.



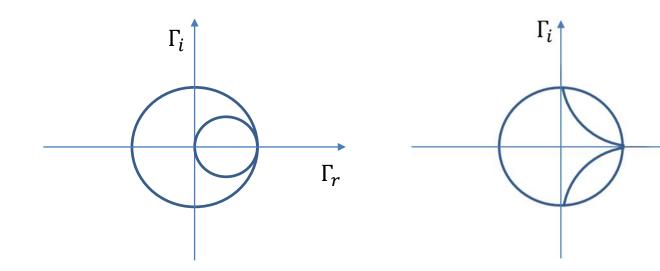
Podemos, então, analisar as equações obtidas para r_L e x_L conforme

$$\left(\Gamma_r - \frac{r_L}{1 + r_L}\right)^2 + \Gamma_i^2 = \left(\frac{1}{1 + r_L}\right)^2$$

Círculos de Resistência plano Γ_r , Γ_i .

$$(\Gamma_r - 1)^2 + \left(\Gamma_i - \frac{1}{x_L}\right)^2 = \left(\frac{1}{x_L}\right)^2$$

Círculos de Reatância plano Γ_r , Γ_i .



Círculos de resistência normalizada r_L são traçados por

 $\left(\Gamma_r - \frac{r_L}{1 + r_L}\right)^2 + \Gamma_i^2 = \left(\frac{1}{1 + r_L}\right)^2$

Para resistência normalizada $r_L = 1$:

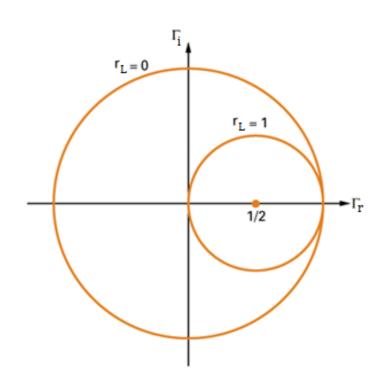
$$\left(\Gamma_r - \frac{1}{2}\right)^2 + \Gamma_i^2 = \left(\frac{1}{2}\right)^2$$

círculo de raio ½ centrado em $\Gamma_r=\frac{1}{2}~{\rm e}~\Gamma_i=0.$

Para resistência normalizada $r_L = 0$:

$$(\Gamma_r)^2 + {\Gamma_i}^2 = (1)^2$$

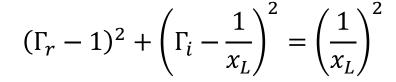
círculo de raio 1 centrado em $\Gamma_r=0$ e $\Gamma_i=0$.



Equação geral para um círculo de raio a, centrado em x=m e y=n:

$$(x-m)^2+(y-n)^2=a^2$$

Círculos de reatância normalizada x_L são traçados por



Para reatância normalizada $x_L = 1$:

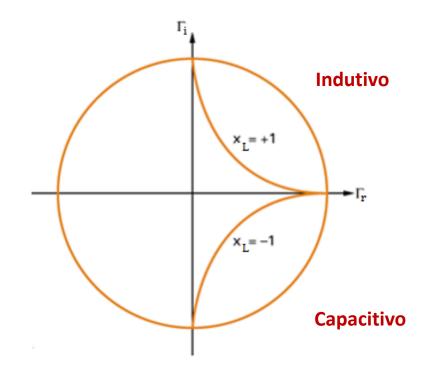
$$(\Gamma_r - 1)^2 + (\Gamma_i - 1)^2 = (1)^2$$

círculo de raio 1 centrado em $\Gamma_r=1$ e $\Gamma_i=1$.

Para reatância normalizada $x_L = -1$:

$$(\Gamma_r - 1)^2 + (\Gamma_i + 1)^2 = (-1)^2$$

círculo de raio 1 centrado em $\Gamma_r=1$ e $\Gamma_i=-1$.

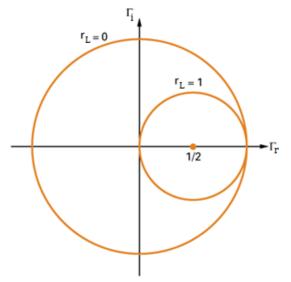


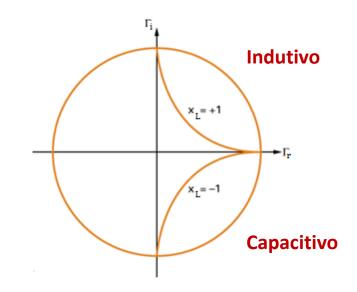
Equação geral para um círculo de raio a, centrado em x=m e y=n:

$$(x-m)^2+(y-n)^2=a^2$$

$$\left(\Gamma_r - \frac{r_L}{1 + r_L}\right)^2 + \Gamma_i^2 = \left(\frac{1}{1 + r_L}\right)^2$$

$$(\Gamma_r - 1)^2 + \left(\Gamma_i - \frac{1}{x_L}\right)^2 = \left(\frac{1}{x_L}\right)^2$$





Observe que:

- Todos os círculos de resistência tem centros no eixo horizontal Γ_i = 0 e passam pelo ponto Γ_r = 1 no lado direito da carta;
- Todos os círculos de reatância têm centros na linha vertical Γ_r = 1 (fora da carta) e passam pelo ponto Γ_r = 1;
- Os círculos de resistência e reatância são ortogonais.

 A Carta de Smith também pode ser utilizada para determinar a impedância da linha de transmissão, resolvendo a equação

$$Z_{in} = Z_0 \frac{Z_L + jZ_0 \tan \beta l}{Z_0 + jZ_L \tan \beta l}$$

 A equação acima também pode ser expressa em termos do coeficiente de reflexão conforme

$$Z_{in} = Z_0 \frac{1 + \Gamma_L e^{-2j\beta l}}{1 - \Gamma_L e^{-2j\beta l}}$$

onde Γ_L é o coeficiente de reflexão na carga e l é o tamanho da linha de transmissão (note que aqui l é positivo).

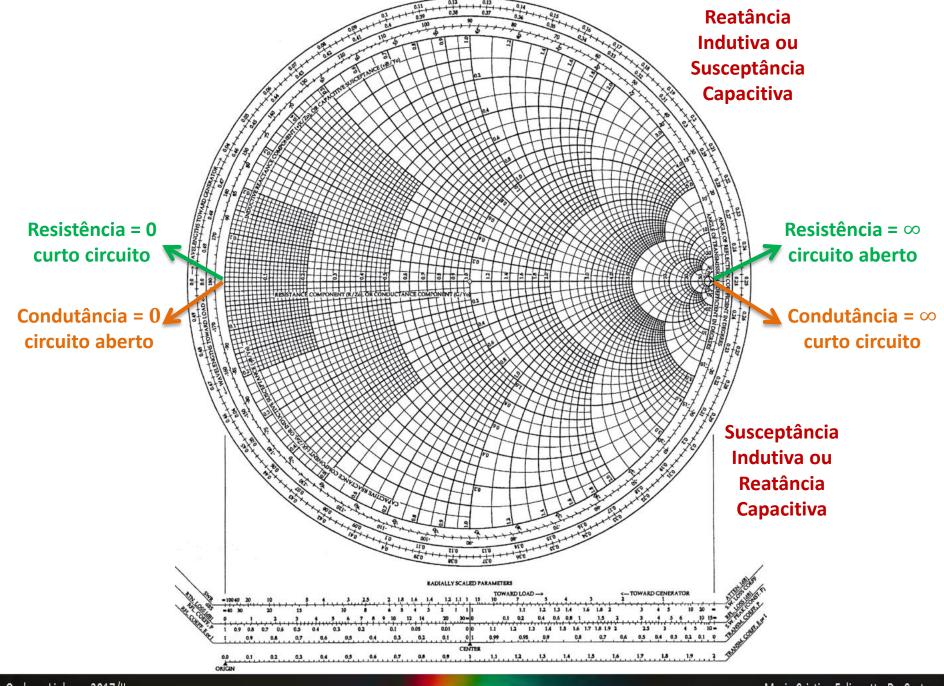
Note que as equações

$$Z_{in} = Z_0 \frac{1 + \Gamma_L e^{-2j\beta l}}{1 - \Gamma_L e^{-2j\beta l}}$$
 e $z_L = \frac{1 + |\Gamma_L| e^{j\theta}}{1 - |\Gamma_L| e^{j\theta}}$

diferem unicamente pelos ângulos de fase dos termos Γ_L .

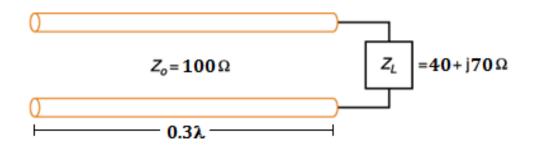
- Assim, se plotamos o coeficiente $|\Gamma_L|e^{j\theta}$ na carga, a impedância de entrada normalizada (z_{in}) vista a partir de um comprimento de linha de tamanho l terminado por uma impedância de carga normalizada (z_L) pode ser encontrada girando o ponto de $2\beta l$ no sentido horário (i.é, subtraindo $2\beta l$ de θ) ao redor do centro da carga.
- O raio permanece com a mesma magnitude, dado que a magnitude de Γ_L não muda com a posição ao longo da LT (que é assumida sem perdas).

- Para facilitar essas rotações, a Carta de Smith tem escalas em torno de sua periferia, calibradas em comprimentos de onda, em direção ao gerador e se afastando de gerador (i.é, indo em direção à carga).
- Estas escalas são relativas, portanto, apenas a diferença nos comprimentos de onda entre dois pontos da Carta de Smith é significativa.
- As escalas cobrem uma gama de 0 a 0.5 λ, o que reflete o fato de que a Carta de Smith inclui automaticamente a periodicidade que se apresenta na linha de transmissão.
- Assim, uma linha de comprimento $\lambda/2$ (ou qualquer múltiplo) requer uma rotação de $2\beta l = 2\pi$ em torno do centro da Carta, trazendo o ponto de volta para sua posição original, mostrando que a impedância de entrada de uma carga vista através de uma linha de comprimento $\lambda/2$ é inalterada.



Ondas e Linhas – 2017/II Maria Cristina Felippetto De Castro

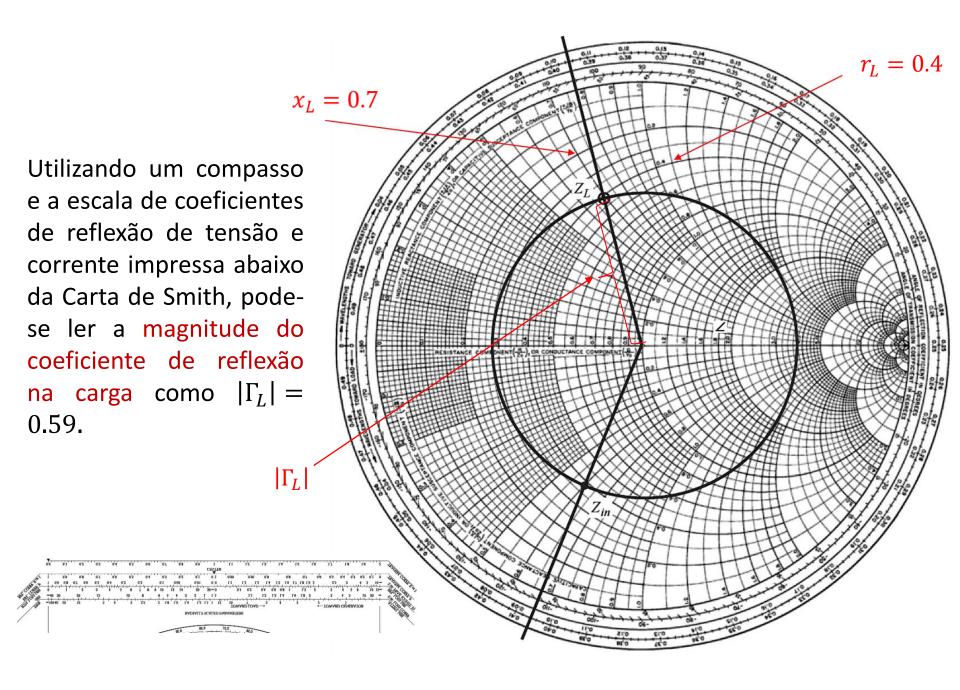
• Uma LT sem perdas, com $Z_0=100\Omega$ é terminada em uma carga $Z_L=40+j70\Omega$. A dimensão da LT é 0.3 λ .



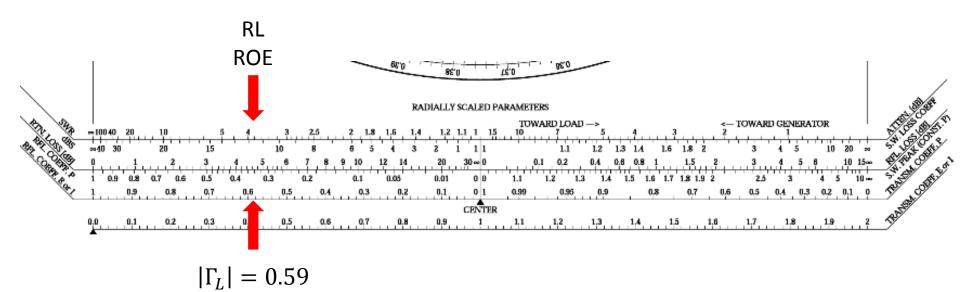
- Utilizando a Carta de Smith, determine:
 - (a) o coeficiente de reflexão na carga;
 - (b) o coeficiente de reflexão na entrada da LT;
 - (c) a impedância de entrada da LT;
 - (d) a relação de onda estacionária na LT;
 - (e) a perda de retorno.

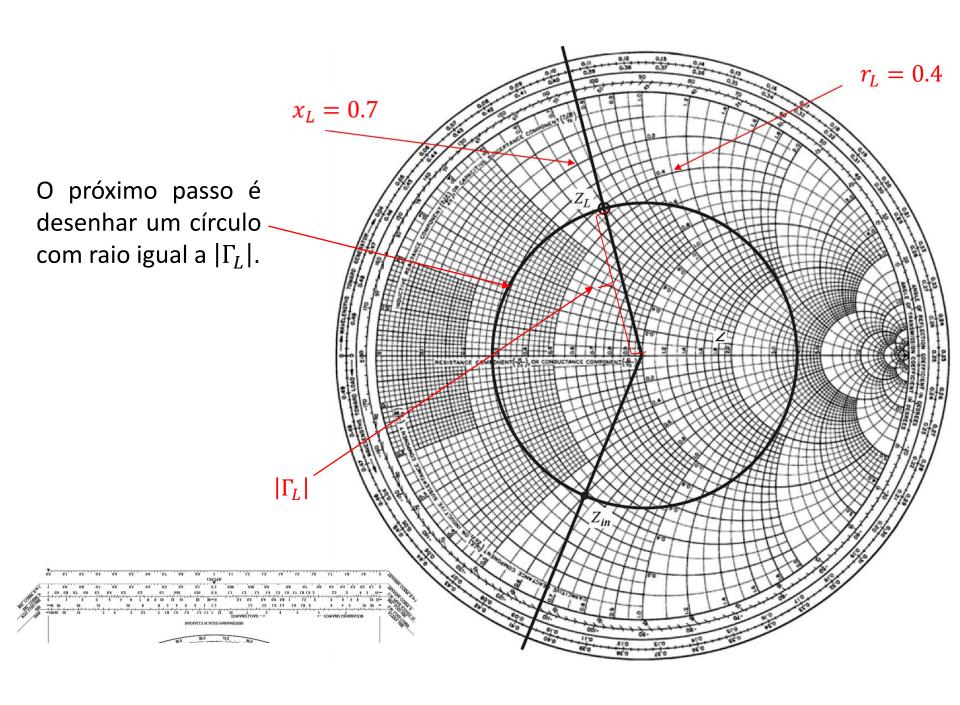


A impedância de carga normalizada por Z_0 resulta em $z_L=0.4+j0.7\Omega$, que pode ser plotada na Carta de Smith conforme figura ao lado.

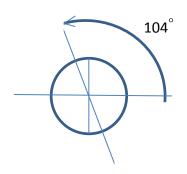


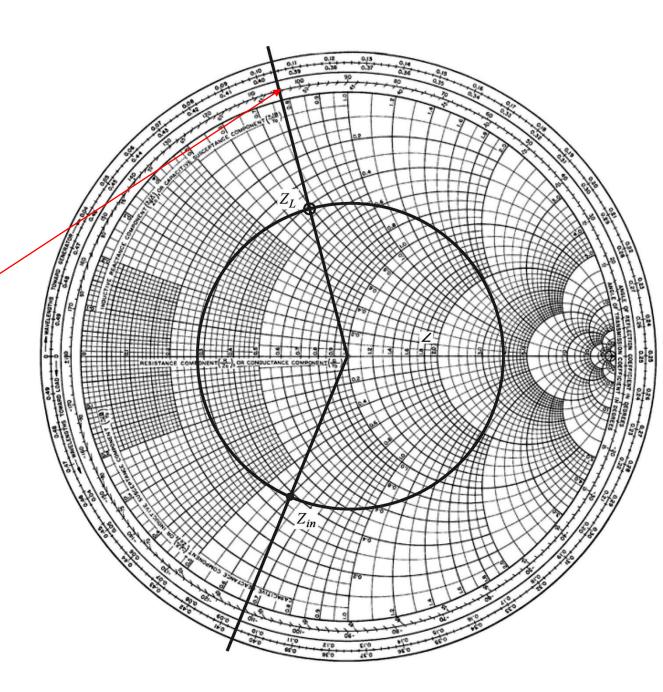
A mesma medida obtida com o compasso que foi usada para determinar a magnitude do coeficiente de reflexão na carga pode ser aplicada à escala de Relação de Onda Estacionária para obter ROE = 3.87 e à escala de Perda de Retorno, para determinar RL = 4.6dB.



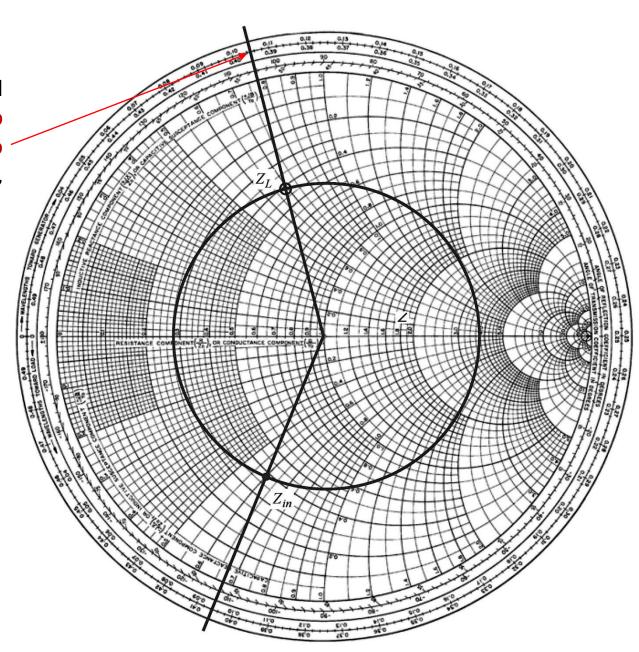


Desenhando uma linha radial que passe através do ponto de impedância de carga (z_L) até a escala externa do gráfico podese ler o ângulo do coeficiente de reflexão na carga (Γ_L) , como 104° .





Estendendo esta linha radial até a escala de comprimento de onda em direção ao gerador (WTG, na Carta), obtém-se o valor de 0,106λ.

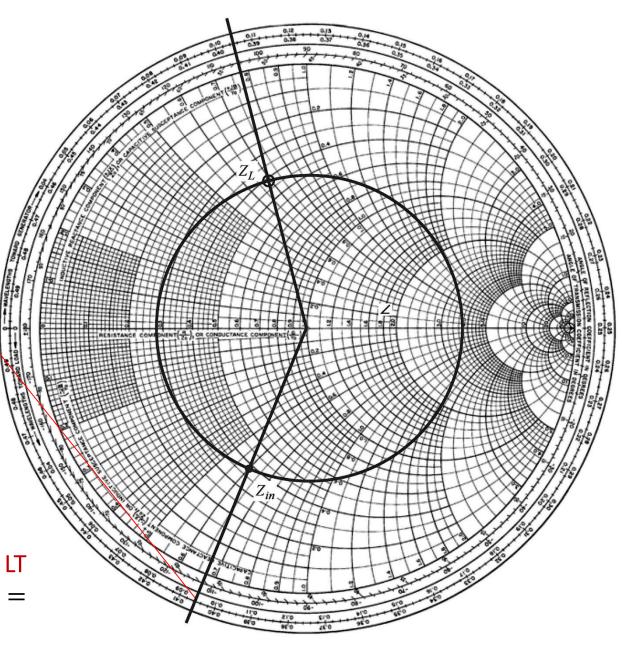


Deslocando a linha radial 0.3λ (a dimensão da LT é 0.3 λ) em direção ao gerador, encontraremos 0.406λ na escala WTG.

A partir desta posição $(0.406\lambda \text{ na escala WTG})$, traçamos uma linha radial que interceptará o círculo de raio $|\Gamma_L|$.

O ponto definido pela interceptação identificará a impedância de entrada normalizada (z_{in}) , como $z_{in} = (0.365 - j0.611) \Omega$.

A impedância de entrada da LT será, portanto, $Z_{in} = Z_0 z_{in} = (36.5 - j61.1) \Omega$.



A magnitude do coeficiente de reflexão na entrada é a mesma $(|\Gamma_{in}| = |\Gamma_L| = 0.59)$, e a fase é lida a partir da linha radial na escala de fase, como -112°.

