

Sistemas MIMO (*multiple input multiple output*), codificador Alamouti, decodificador Alamouti 2 x 1, decodificador MRC 1 x 2 (*maximum ratio combiner*), decodificador Alamouti 2 x 2, diagrama de blocos de um sistema TX-RX OFDM-MIMO Alamouti 2 x 2, comparação de desempenho.

Centro de Tecnologia – Departamento de Eletrônica e Computação UFSM00265 – SISTEMAS DE COMUNICAÇÃO DIGITAL II Prof. Fernando DeCastro

Sistemas MIMO (Multiple Input Multiple Output)

Sistemas MIMO são sistemas *wireless* com *M* antenas transmissoras e *N* antenas receptoras, estabelecendo um cenário de diversidade espacial, conforme mostrado na figura em (a) abaixo. A sequência de símbolos IQ resultante em cada *k*-ésima saída y_k do respectivo RX_k em (a), com $k = 1, 2, \dots, N$, é uma combinação linear de todas as sequências s_1, s_2, \dots, s_M de símbolos IQ transmitidas pelos respectivos TXs, porque, cada antena RX "vê" a onda eletromagnética (EM) irradiada por todas as *M* antenas TX, ondas que são moduladas pelas respectivas sequências de símbolos IQ s_1, s_2, \dots, s_M transmitidas. A ideia básica no âmbito de MIMO é otimizar este cenário de diversidade **pré-codificando** (i.e., pré-combinando) em bandabase nos *M* TXs as sequências de símbolos IQ s_1, s_2, \dots, s_M que modulam a amplitude e a fase das ondas EM irradiadas pelas respectivas antenas TX. O processo de otimização objetiva fazer com que as ondas EM que incidem em uma *k*-ésima antena RX se interfiram construtivamente **pós-combinando** em banda-base entre si as sequências de símbolos IQ que representam estas ondas EM, pós-combinação que é efetuada no processamento em banda-base no decodificador em cada RX. A pré-codificação efetuada no TX e a pós-decodificação efetuada no RX, maximiza a onda EM recebida de uma determinada antena TX e cancela por interferência destrutiva a superposição de todas as demais ondas EM.

Há diversas técnicas MIMO. Por exemplo, na técnica denominada *Eigen-Beamforming* (<u>https://silvustechnologies.com/why-silvus/technology/introduction-to-mimo/</u>) a matriz $M \times N$ que descreve a transmitância de cada percurso do canal entre cada respectivo par de antenas TX e RX (denominada matriz do canal) é diagonalizada por decomposição em valores singulares (<u>https://arxiv.org/ftp/arxiv/papers/0806/0806.3630.pdf</u>) de modo que para M = N seja possível obter um cenário virtual de interferência controlado pela pré-codificação feita sobre a sequência de símbolos IQ em cada TX e pelo processo de pós-decodificação em cada RX.

Sistemas MIMO (Multiple Input Multiple Output)

A pré-codificação efetuada no TX e a pós-decodificação efetuada no RX resulta que cada uma das N antenas do RX "vê" a onda EM modulada e transmitida por uma única das N antenas do TX. Isto acontece porque as ondas EM que incidem em uma k-ésima antena do RX se interferem construtivamente entre si no processamento em banda-base efetuado no pósdecodificador em cada RX, maximizando a onda EM recebida de uma determinada antena TX e cancelando por interferência destrutiva a superposição de todas as demais ondas EM. Isto faz resultar nas saídas dos RXs y_1, y_2, \dots, y_N as sequências de símbolos respectivamente transmitidas s_1, s_2, \dots, s_N , conforme mostrado em (b) no slide anterior.

Note que a pré-codificação dos símbolos IQ em cada TX e a pós-decodificação em cada RX (que discutiremos adiante) altera a amplitude e fase das ondas transmitidas e recebidas e é este processo que permite controlar o cenário de interferência das ondas EM que incidem nas antenas RX e que são combinadas e decodificadas pelo respectivo decodificador em cada RX. Neste contexto, a técnica MIMO pode ser interpretada como uma técnica que implementa "multipercurso controlado e benéfico". Neste estudo vamos delimitar o escopo da análise a sistemas MIMO com duas antenas TX e duas antenas RX, conforme mostra a figura a seguir:

Note na figura que existem quatro percursos de propagação (linhas tracejadas) das ondas EM irradiadas pelas antenas TX e que se propagam até as antenas RX. As ondas recebidas pelas antenas RX são combinadas e se interferem mutuamente no processamento em banda-base efetuado no decodificador MIMO em cada RX de acordo com o padrão de interferência determinado pelo codificador MIMO ao codificar os símbolos IQ nos respectivos TXs, resultando nos dois percursos "virtuais" em vermelho, independentes e separados um do outro, que fazem cada antena RX "ver" uma única e respectiva antena TX. Estes dois percursos "virtuais" em vermelho não são percursos de ondas EM reais, mas sim o resultado virtual da interferência entre as ondas EM reais que se propagam no canal e que são combinadas no decodificador no RX.

Sistemas de Comunicação Digital II

Cap V.1 – Sistemas MIMO

Codificador Alamouti

Vamos delimitar adicionalmente o escopo de nossa análise a sistemas MIMO-OFDM com N portadoras (ver Cap IV.2), sendo a codificação MIMO feita através da técnica Alamouti (que discutiremos nos próximos slides). Como o sistema é OFDM, a codificação Alamouti no TX é individualmente aplicada à sequência de símbolos IQ que modula respectivamente cada késima portadora das duas IFFTs, e a decodificação Alamouti no RX é individualmente aplicada à sequência de símbolos IQ que é respectivamente demodulada na saída de cada k-ésima portadora nas duas FFTs , com $k = 1, 2, \dots, N$, conforme mostra o diagrama de blocos abaixo do TX e do RX MIMO-OFDM:

Sistemas de Comunicação Digital II

Codificador Alamouti

A codificação Alamouti é extensivamente usada em sistemas WiFi, como, por exemplo, no padrão IEEE 802.11n (ver <u>https://www.teleco.com.br/tutoriais/tutorialwifiiee/pagina_4.asp</u>). A técnica Alamouti é um sub-conjunto da classe de códigos denominada *space time block codes* (ver <u>https://en.wikipedia.org/wiki/Space%E2%80%93time_block_code</u>). A idéia básica no âmbito da codificação Alamouti é previamente organizar a sequência de símbolos IQ a ser transmitida por cada *k*-ésima portadora das duas IFFTs em uma sequência de vetores $\underline{s} = [S_1 \ S_2]$, cujos componentes são o símbolo IQ anterior s_1 e o símbolo IQ atual s_2 . O codificador Alamouti gera dois novos vetores ortogonais entre si a partir de $\underline{s} = [S_1 \ S_2]$: O vetor $\underline{s_1} = [s_1 \ -s_2^*]$, que modula a *k*-ésima portadora da IFFT do TX1 e é transmitido pela antena 1 e o vetor $\underline{s_2} = [s_2 \ s_1^*]$, que modula a *k*-ésima portadora da IFFT do TX2 e é transmitido pela antena 2, conforme mostrado em (a):

Note em (a) que cada portadora de dados é representada por uma cor distinta, sendo mostradas a portadora de frequência f_1 mais baixa na cor verde e a portadora de frequência f_N mais alta na cor azul. Os *scattered pilots* (SPs – ver slide 37 do Cap IV.2) são atribuídos a portadoras SP pares na IFFT do TX1 e a portadoras SP ímpares na IFFT do TX2 (em vermelho em (a)).

Para cada k-ésima portadora SP par na IFFT do TX1 há uma correspondente késima portadora modulada por 0 + j0 na IFFT do TX2, e para cada k + 1-ésima portadora SP ímpar na IFFT do TX2 há uma correspondente k + 1-ésima portadora modulada por 0 + j0 na IFFT do TX1.

Portanto, simplificando o diagrama em (a), para cada *k*-ésima portadora de dados das duas IFFTs a representação equivalente em banda-base da transmissão do vetor $\underline{s_1} = [s_1 \quad -s_2^*]$ pela antena do TX1 e da transmissão do vetor $\underline{s_2} = [s_2 \quad \overline{s_1}^*]$ pela antena do TX2 é conforme mostrado em (b).

Sistemas de Comunicação Digital II

Cap V.1 – Sistemas MIMO

Codificador Alamouti

A formação dos dois percursos "virtuais", independentes e separados um do outro, que fazem cada antena RX "ver" uma única e respectiva antena TX (ver slide 3) é consequência da ortogonalidade hermitiana (ver <u>https://en.wikipedia.org/wiki/Hermitian matrix</u>) entre cada vetor $\underline{s_1} = [s_1 - s_2^*]$ transmitido pela antena do TX1 e cada vetor $\underline{s_2} = [s_2 \ s_1^*]$ transmitido pela antena do TX2. Se fizermos o produto escalar entre $\underline{s_1} e \underline{s_2}$, ambos com componentes de valor complexo, obtemos:

$$\underline{s_1} \cdot \underline{s_2}^H = [s_1 \quad -s_2^*] \begin{bmatrix} s_2 \\ s_1^* \end{bmatrix}^* = [s_1 \quad -s_2^*] \begin{bmatrix} s_2^* \\ s_1 \end{bmatrix} = s_1 s_2^* - s_2^* s_1 = 0$$
(1)

Por exemplo, consideremos um sistema MIMO-OFDM-16QAM, e que, em um determinado instante, para a k-ésima portadora de dados das duas IFFTs no TX, os símbolos IQ $s_1 = 1 - j1$ e $s_2 = 3 + j1$ sejam provenientes do mapper. O codificador Alamouti forma em sua entrada o vetor $\underline{s} = [1 - j1 \quad 3 + j1]$ e produz na sua saída os vetores $\underline{s_1} = [1 - j1 \quad -(3 + j1)^*]$ e $s_2 = [3 + j1 \quad (1 - j1)^*]$. Daí, de (1), temos:

$$\underline{s_1} \cdot \underline{s_2}^H = \begin{bmatrix} 1 - j1 & -(3 + j1)^* \end{bmatrix} \begin{bmatrix} 3 + j1 \\ (1 - j1)^* \end{bmatrix}^* = \begin{bmatrix} 1 - j1 & -(3 + j1)^* \end{bmatrix} \begin{bmatrix} (3 + j1)^* \\ 1 - j1 \end{bmatrix} = \begin{bmatrix} (1 - j1)(3 + j1)^* - (3 + j1)^*(1 - j1) \end{bmatrix} = (1 - j1)(3 - j1) - (3 - j1)(1 - j1) = 0$$

Portanto, a ortogonalidade entre cada vetor $\underline{s_1} = [s_1 - s_2^*]$ transmitido pela antena do TX1 e cada respectivo vetor $\underline{s_2} = [s_2 \ s_1^*]$ transmitido pela antena do TX2 estabelece dois percursos "virtuais" independentes e separados um do outro, que fazem cada antena RX "ver" uma única e respectiva antena TX para cada k-ésima portadora, conforme mostra a figura.

A figura (a) mostra o modelo de um sistema OFDM MIMO 2x1 (2 antenas TX e 1 antena RX) para a k-ésima portadora demodulada por um decodificador Alamouti 2 x 1 :

O bloco "channel estimator" estima na frequência da k-ésima portadora o valor $h_1 = |h_1|e^{j \ge h_1}$ da função de transferência do canal estabelecido entre a antena TX1 e a antena RX a partir dos *scattered pilots* (SPs – ver slide 37 do Cap IV.2) atribuídos a portadoras SP pares na IFFT do TX1. Simultaneamente, o bloco "channel estimator" estima na frequência da k + 1-ésima portadora o valor $h_2 = |h_2|e^{j \ge h_2}$ da função de transferência do canal estabelecido entre a antena TX2 e a antena RX a partir dos *scattered pilots* atribuídos a portadoras SP ímpares na IFFT do TX2, e compensa por interpolação o valor de $h_2 = |h_2|e^{j \ge h_2}$ para a frequência da k-ésima portadora. Assume-se que os valores de h_1 e h_2 não alterem significativamente durante o intervalo T entre os símbolos IQ s_1 e s_2 que formam o vetor $\underline{s} = [s_1 \quad s_2]$ na entrada do codificador Alamouti da k-ésima portadora das duas IFFTs no TX.

Conforme mostrado em (b), no instante t a antena TX1 transmite s_1 e a antena TX2 transmite s_2 , que se propagam até a antena RX respectivamente através dos canais $h_1 e h_2$ mostrados em (a). E conforme mostrado em (b), no instante t + T a antena TX1 transmite $-s_2^*$ e a antena TX2 transmite s_1^* , que se propagam até a antena RX respectivamente através dos canais $h_1 e h_2$ mostrados em (a). Portanto, de (a), o sinal r_1 recebido na antena RX no instante t e o sinal r_2 recebido na antena RX no instante t + T são dados por:

(b)

$$\begin{bmatrix} s_1 & s_2 \end{bmatrix} \rightarrow \begin{bmatrix} s_1 & -s_2^* \\ s_2 & s_1^* \end{bmatrix} \qquad \begin{array}{c} \underline{S_1} = \begin{bmatrix} s_1 & -s_2^* \\ & & \downarrow \\ & \downarrow \\ \underline{S_2} = \begin{bmatrix} s_2 & s_1^* \end{bmatrix} \\ \underline{S_2} = \begin{bmatrix} s_2 & s_1^* \end{bmatrix}$$

$$r_1 = h_1 \, s_1 + h_2 \, s_2 + \eta_1 \tag{2}$$

$$r_2 = -h_1 s_2^* + h_2 s_1^* + \eta_2 \tag{3}$$

onde $\eta_1 \in \eta_2$ representam o ruído AWGN nos canais $h_1 \in h_2$.

Sistemas de Comunicação Digital II

Para simplificar a análise que segue, vamos supor que a SNR (*Signal To Noise Ratio*) nos canais $h_1 e h_2$ seja suficientemente alta, de modo que $\eta_1 e \eta_2$ possam ser desprezados em (2) e (3). Nesta situação, o sinal r_1 recebido na antena RX no instante t e o sinal r_2 recebido na antena RX no instante t + T são dados por:

$$t \rightarrow \qquad r_1 = h_1 \, s_1 + h_2 \, s_2 \tag{4}$$

$$t + T \rightarrow r_2 = -h_1 s_2^* + h_2 s_1^*$$
 (5)

Note que se quisermos detectar quais símbolos IQ s_1 e s_2 foram transmitidos a partir de r_1 e r_2 recebidos, podemos testar todas as possíveis combinações de pares de símbolos (\hat{s}_1, \hat{s}_2) ordenadamente retirados do alfabeto A da modulação até que $h_1\hat{s}_1 + h_2\hat{s}_2$ em (4) resulte o mais próximo de r_1 recebido no instante t e simultaneamente até que $-h_1\hat{s}_2^* + h_2\hat{s}_1^*$ em (5) resulte o mais próximo de r_2 recebido no instante t + T, ou, equivalentemente, até que $|r_1 - h_1\hat{s}_1 - h_2\hat{s}_2|^2 + |r_2 + h_1\hat{s}_2^* - h_2\hat{s}_1^*|^2 \cong 0$. O par (\hat{s}_1, \hat{s}_2) que minimiza $|r_1 - h_1\hat{s}_1 - h_2\hat{s}_2|^2 + |r_2 + h_1\hat{s}_2^* - h_2\hat{s}_1^*|^2$ é considerado ser o par (s_1, s_2) transmitido. Em outras palavras, o método de detecção deve contemplar o fato de que os símbolos IQ s_1 e s_2 são transmitidos pelo TX em um único "pacote" de informação representado pelo vetor $\underline{s} = [s_1 \quad s_2]$, e, portanto, a detecção no RX também precisa ser efetuada por "pacote" de informação. Este método, que efetua a detecção por máxima verossimilhança (MLD - maximum likelihood decoder) simultânea entre (s_1, s_2) transmitido e (\hat{s}_1, \hat{s}_2) estimado no detector , é matematicamente expresso através de (6), abaixo.

$$[\hat{s}_1 \quad \hat{s}_2] = \arg\min_{(\hat{s}_1 \in A, \, \hat{s}_2 \in A)} (|r_1 - h_1 \hat{s}_1 - h_2 \hat{s}_2|^2 + |r_2 + h_1 \hat{s}_2^* - h_2 \hat{s}_1^* |^2)$$
(6)

Os argumentos $\hat{s_1} \in \hat{s_2}$ no lado direito de (6) representam um par $(\hat{s_1}, \hat{s_2})$ de símbolos IQ, com $\hat{s_1} \in \hat{s_2}$ sendo ordenadamente retirados do alfabeto A da modulação, de modo que para uma modulação com M símbolos IQ no alfabeto A existem $M \times M = M^2$ pares de símbolos $(\hat{s_1}, \hat{s_2})$. Dado os sinais $r_1 \in r_2$ recebidos, cada um destes M^2 pares $(\hat{s_1}, \hat{s_2})$ é usado como argumento da expressão (6), e para cada par é determinado o resultado de $|r_1 - h_1\hat{s_1} - h_2\hat{s_2}|^2 + |r_2 + h_1\hat{s_2}^* - h_2\hat{s_1}^*|^2$. O par $(\hat{s_1}, \hat{s_2})$ que, dentre os M^2 pares, resultar no menor valor para $|r_1 - h_1\hat{s_1} - h_2\hat{s_2}|^2 + |r_2 + h_1\hat{s_2}^* - h_2\hat{s_1}^*|^2$ é considerado como o vetor $\underline{s} = [s_1 \quad s_2]$ transmitido.

Note que este método "força bruta" é inviável ser implementado em hardware e em tempo real para modulações com alfabeto A extenso, como 256-QAM, cujo alfabeto A contempla M = 256 símbolos IQ, e, portanto, seria necessário testar em (6) $M^2 = 65.536$ pares ($\hat{s_1}$, $\hat{s_2}$) para cada par de símbolos (s_1, s_2) transmitido. Isto resulta em uma elevada (e desnecessária) complexidade computacional no bloco "detector" do RX (ver figura (a) no slide anterior).

Sistemas de Comunicação Digital II

complexidade computacional de (6) solução alta foi proposta Alamouti para por (ver Α а https://en.wikipedia.org/wiki/Siavash Alamouti), e consiste em, partindo de (6), desacoplar o processo de detecção por máxima verossimilhança dos símbolos s_1 e s_2 transmitidos, conforme desenvolvimento analítico no Apêndice A. O resultado do desenvolvimento no Apêndice A é um processo de detecção por verossimilhança (ML - maximum likelihood) em que os símbolos s_1 e s_2 transmitidos são detectados simultaneamente mas de forma independente um do outro, conforme segue:

$$\widehat{s_1} = \arg\min_{(\widehat{s_1} \in A)} \{ (|h_1|^2 + |h_2|^2 - 1) |\widehat{s_1}|^2 + d^2(\widehat{s_1}, \widehat{s_1}) \}$$
(7)

onde

$$\tilde{s_1} = h_1^* r_1 + h_2 r_2^* \tag{8}$$

é o sinal na saída do bloco "Combiner", conforme mostra a figura abaixo, que é a pré-estimativa para o valor de $\hat{s_1}$ que maximiza a potência do sinal s_1 em r_1 dado por (4) e em r_2 dado por (5). O valor de $\tilde{s_1}$ é algebricamente definido no desenvolvimento analítico no slide 21 do Apêndice A. Em (7) e em (9) $d^2(z_1, z_2) = |z_1 - z_2|^2 = (z_1 - z_2)(z_1 - z_2)^* = (z_1 - z_2)(z_1^* - z_2^*)$ é o operador que retorna o quadrado da distância Euclidiana $|z_1 - z_2|^2$ entre dois números complexos $z_1 e z_2$.

$$\widehat{s_2} = \arg\min_{(\widehat{s_2} \in A)} \{ (|h_1|^2 + |h_2|^2 - 1) |\widehat{s_2}|^2 + d^2(\widehat{s_2}, \widehat{s_2}) \}$$
(9)

onde

$$\tilde{s}_{2} = h_{2}^{*} r_{1} - h_{1} r_{2}^{*}$$
(10)

é o sinal na saída do bloco "Combiner", conforme mostra a figura abaixo, que é a pré-estimativa para o valor de \hat{s}_2 que maximiza a potência do sinal s_2 em r_1 dado por (4) e em r_2 dado por (5). O valor de \hat{s}_2 é algebricamente definido de maneira similar ao desenvolvimento analítico no slide 21 feito para \tilde{s}_1 .

Sistemas de Comunicação Digital II

Note que o bloco "detector" na figura abaixo testa todos os M símbolos IQ do alfabeto A da modulação, "experimentando" cada um dos M símbolos no argumento \hat{s}_1 no lado direito da expressão (7). O \hat{s}_1 que minimiza $(|h_1|^2 + |h_2|^2 - 1)|\hat{s}_1|^2 + d^2(\hat{s}_1, \hat{s}_1)$ é identificado como o símbolo s1 transmitido.

$$\widehat{s_{1}} = \arg \min_{(\widehat{s_{1}} \in A)} \{ (|h_{1}|^{2} + |h_{2}|^{2} - 1) |\widehat{s_{1}}|^{2} + d^{2}(\widetilde{s_{1}}, \widehat{s_{1}}) \}$$

$$\widetilde{s_{1}} = h_{1}^{*} r_{1} + h_{2} r_{2}^{*}$$
(8)

onde $d^2(z_1, z_2) = |z_1 - z_2|^2 = (z_1 - z_2)(z_1 - z_2)^* = (z_1 - z_2)(z_1^* - z_2^*).$

De mesma forma, o bloco "detector" na figura abaixo testa todos os M símbolos IQ do alfabeto A da modulação, "experimentando" cada um dos M símbolos no argumento \hat{s}_2 no lado direito da expressão (9). O \hat{s}_2 que minimiza $(|h_1|^2 + |h_2|^2 - 1)|\hat{s}_2|^2 + d^2(\hat{s}_2, \hat{s}_2)$ é identificado como o símbolo s2 transmitido.

$$\widehat{s}_{2} = \arg \min_{(\widehat{s}_{2} \in A)} \{ (|h_{1}|^{2} + |h_{2}|^{2} - 1) |\widehat{s}_{2}|^{2} + d^{2}(\widetilde{s}_{2}, \widehat{s}_{2}) \}$$

$$\widetilde{s}_{2} = h_{2}^{*} r_{1} - h_{1} r_{2}^{*}$$
(10)

Sistemas de Comunicação Digital II

Note a redução da complexidade apresentada pelo detetor por máxima verossimilhança (ML - maximum likelihood) de Alamouti: No método "força bruta" da equação (6), para uma modulação M-QAM com M = 256 símbolos, era necessário testar em (6) $M^2 = 65.536$ pares ($\hat{s_1}$, $\hat{s_2}$) do alfabeto A para detectar (s_1, s_2) transmitido. No detetor de Alamouti, representado pelas equações (7) e (9), novamente reproduzidas abaixo, são necessários testar apenas M = 256 símbolos do alfabeto A em cada uma das equações, que são desacopladas e independentes. Este desacoplamento é uma vantagem adicional porque as equações podem ser implementadas em lógica programável (FPGA) de modo a serem executadas em paralelo, reduzindo o tempo de processamento.

$$\widehat{s_1} = \arg\min_{(\widehat{s_1} \in A)} \{ (|h_1|^2 + |h_2|^2 - 1) |\widehat{s_1}|^2 + d^2(\widehat{s_1}, \widehat{s_1}) \}$$
(7)

$$\widetilde{s_1} = h_1^* r_1 + h_2 r_2^* \tag{8}$$

$$\widehat{s_2} = \arg\min_{(\widehat{s_2} \in A)} \{ (|h_1|^2 + |h_2|^2 - 1) |\widehat{s_2}|^2 + d^2(\widetilde{s_2}, \widehat{s_2}) \}$$
(9)

$$\widetilde{s_2} = h_2^* r_1 - h_1 r_2^* \tag{10}$$

onde
$$d^2(z_1, z_2) = |z_1 - z_2|^2 = (z_1 - z_2)(z_1 - z_2)^* = (z_1 - z_2)(z_1^* - z_2^*)$$

Sistemas de Comunicação Digital II

Decodificador MRC 1 x 2 (*maximum ratio combiner***)**

A figura mostra o modelo de um sistema OFDM MIMO 1x2 (1 antena TX e 2 antenas RX) para a k-ésima portadora demodulada por um decodificador MRC (*maximum ratio combiner*):

Dado que há somente uma única antena TX, o decodificador MRC simplesmente combina os sinais recebidos pelas antenas RX1 e RX2 de modo a maximizar a potência do sinal resultante da combinação em relação a potência de ruído, maximizando assim a SNR (*Signal To Noise Ratio*) na entrada do detetor ML (ML - *maximum likelihood*):

$$r_1 = h_1 \, s_0 + \eta_1 \tag{11}$$

$$r_2 = h_2 \, s_0 + \eta_2 \tag{12}$$

$$\widetilde{s_{0}} = h_{1}^{*}r_{1} + h_{2}^{*}r_{2} = h_{1}h_{1}^{*}s_{0} + h_{1}^{*}\eta_{1} + h_{2}^{*}h_{2}s_{0} + h_{2}^{*}\eta_{2} =$$

$$= |h_{1}|^{2}s_{0} + |h_{2}|^{2}s_{0} + h_{1}^{*}\eta_{1} + h_{2}^{*}\eta_{2} = (|h_{1}|^{2} + |h_{2}|^{2})s_{0} + h_{1}^{*}\eta_{1} + h_{2}^{*}\eta_{2}$$
(13)
maximiza a potência do sinal

Sistemas de Comunicação Digital II

Cap V.1 – Sistemas MIMO

A figura mostra o modelo de um sistema OFDM MIMO 2x2 (2 antenas TX e 2 antenas RX) para a k-ésima portadora demodulada por um decodificador Alamouti 2 x 2. Os sinais recebidos nas antenas RX1 e RX2 são:

RX1
$$\neg$$
 $r_1 = h_1 s_1 + h_2 s_2 + \eta_1$ (14)

$$t + T \to r_2 = -h_1 s_2^* + h_2 s_1^* + \eta_2$$
(15)

$$\int t \to r_3 = h_3 \, s_1 + h_4 \, s_2 + \eta_3 \tag{16}$$

RX2
$$t + T \rightarrow r_4 = -h_3 s_2^* + h_4 s_1^* + \eta_4$$
 (17)

Note que o decodificador Alamouti 2x2 é o decodificador Alamouti 2x1 visto nos slides anteriores com a antena RX duplicada.

Portanto, o equacionamento do decodificador Alamouti 2x2 é basicamente derivado das equações que descrevem o decodificador Alamouti 2x1, conforme segue:

$$\widehat{s}_{2} \quad \widehat{s}_{1} = \arg\min_{(\widehat{s}_{1} \in A)} \{ (|h_{1}|^{2} + |h_{2}|^{2} + |h_{3}|^{2} + |h_{4}|^{2} - 1) |\widehat{s}_{1}|^{2} + d^{2}(\widetilde{s}_{1}, \widehat{s}_{1}) \}$$
(18)

$$\widetilde{s_1} = h_1^* r_1 + h_2 r_2^* + h_3^* r_3 + h_4 r_4^*$$
(19)

$$\widehat{s_2} = \arg\min_{(\widehat{s_2} \in A)} \{ (|h_1|^2 + |h_2|^2 + |h_3|^2 + |h_4|^2 - 1) |\widehat{s_2}|^2 + d^2(\widetilde{s_2}, \widehat{s_2}) \}$$
(20)

$$\tilde{s}_{2} = h_{2}^{*}r_{1} - h_{1}r_{2}^{*} + h_{4}^{*}r_{3} - h_{3}r_{4}^{*}$$
(21)

onde $d^2(z_1, z_2) = |z_1 - z_2|^2 = (z_1 - z_2)(z_1 - z_2)^* = (z_1 - z_2)(z_1^* - z_2^*)$

Diagrama de blocos de um sistema TX-RX OFDM-MIMO Alamouti 2 x 2

Sistemas de Comunicação Digital II

Cap V.1 – Sistemas MIMO

Comparação de desempenho

O gráfico abaixo mostra as curvas de desempenho BER x SNR (*Bit Error Rate x Signal to Noise Ratio*) medidas na saída de *de-mapper* para um sistema OFDM com portadoras de dados moduladas por símbolos IQ QPSK (ver slide 23 de <u>https://www.fccdecastro.com.br/pdf/SCD1_CapIV.pdf</u>). O modelo de canal é Rayleigh, que representa a situação de operação móvel em um ambiente de multipercurso urbano, em que não há percurso direto (na antena RX incidem apenas ondas refletidas nas estruturas metálicas urbanas) e a sequência de desvanecimentos de sinal ocorre em toda a banda ao longo da operação móvel, com a amplitude do sinal obedecendo à distribuição estatística de Rayleigh (ver <u>https://en.wikipedia.org/wiki/Rayleigh fading</u>). O gráfico compara o desempenho de um sistema SISO (*Single Input Single Output*), i.e., um sistema com uma antena TX e uma antena RX, com os sistemas MIMO Alamouti 2x1, MRC 1x2 e Alamouti 2x2 que discutimos nos slides anteriores.

Note a significativa melhora de desempenho do sistema Alamouti 2x2 em relação ao clássico sistema SISO 1x1. Por exemplo, para SNR=10dB o sistema SISO apresenta uma BER= 2×10^{-2} e o sistema Alamouti 2x2 apresenta uma BER= 1×10^{-4} (uma melhora de desempenho de quase duas ordens de grandeza pelo simples acréscimo de uma antena no TX e de uma antena no RX!).

Por exemplo, o sistema de telefonia celular 5G adota a técnica denominada *Massive* MIMO, com dezenas de antenas no TX e dezenas de antenas no RX, resultando um aumento da taxa de transmissão da ordem de 50 vezes em relação ao sistema 4G-LTE (ver <u>https://5g.co.uk/guides/what-is-massive-</u><u>mimo-technology/</u>).

Sistemas de Comunicação Digital II

Exemplo

A figura (a) mostra o diagrama de blocos simplificado de um sistema TX-RX OFDM-MIMO Alamouti 2x2 com modulação 16-QAM conforme mapa em (b). Em (c) é mostrado o diagrama de fluxo de sinal do decodificador Alamout 2x2 para a k-ésima portadora. Os sinais recebidos no RX1 em (c) nos instantes t e t + T são respectivamente $r_1 = 1.24 + j0.076 e r_2 = -0.543 - j3.206$. Os sinais recebidos no RX2 em (c) nos instantes t e t + T são respectivamente $r_3 = -1.9 + j0.301 e r_4 = 1.112 + j2.525$. Para esta k-ésima portadora o channel estimator determinou as funções de transferência $h_1 = 1.0e^{j60^\circ}$, $h_2 = 0.1e^{-j95^\circ}$, $h_3 = 0.95e^{-j135^\circ} e h_4 = 0.2e^{j170^\circ}$.

Pede-se: Determine as palavras binárias na saída do *mapper* no TX que foram respecticamente transmitidas nos instantes t e t + T, onde T é a duração do símbolo IQ associado à respectiva palavra binária.

Sistemas de Comunicação Digital II

Cap V.1 – Sistemas MIMO

Exemplo

Solução - Determinando as saídas do combiner através das equações (19) e (21):

$$\widetilde{s_1} = h_1^* r_1 + h_2 r_2^* + h_3^* r_3 + h_4 r_4^* = 1.953 - j1.953$$

$$\widetilde{s_2} = h_2^* r_1 - h_1 r_2^* + h_4^* r_3 - h_3 r_4^* = 5.857 - j1.953$$

Para detectar o símbolo s1 transmitido através da equação (18) é necessário testar cada um dos M = 16 símbolos IQ no mapa (a) no argumento $\hat{s_1}$ da expressão $\text{Eval1} = \{(|h_1|^2 + |h_2|^2 + |h_3|^2 + |h_4|^2 - 1) |\hat{s_1}|^2 + d^2(\hat{s_1}, \hat{s_1})\}$. O símbolo IQ $\hat{s_1}$ que minimiza o valor Eval1 é identificado como o símbolo s1 transmitido. Determinando Eval1 para cada um dos M = 16 símbolos IQ no mapa (a):

onde
$$d^2(z_1, z_2) = |z_1 - z_2|^2$$

Exemplo

Para detectar o símbolo s2 transmitido através da equação (20) é necessário testar cada um dos M = 16 símbolos IQ no mapa (a) no argumento \hat{s}_2 da expressão $\text{Eval2} = \{(|h_1|^2 + |h_2|^2 + |h_3|^2 + |h_4|^2 - 1) |\hat{s}_2|^2 + d^2(\hat{s}_2, \hat{s}_2)\}$. O símbolo IQ \hat{s}_2 que minimiza o valor Eval2 é identificado como o símbolo s2 transmitido. Determinando Eval2 para cada um dos M = 16 símbolos IQ no mapa (a):

onde
$$d^2(z_1, z_2) = |z_1 - z_2|^2$$

0
120.128

81.078

57.648

49.838

96.698 57.648

34.218

26.408 88.888

49.838

26.408

18.598

96.698

57.648

34.218

26.408

0

2

3

5

6

7

8

9 10

11

12

13

Eval2 =

Partindo da métrica minimizada através da equação (6), temos:

Defs & propriedades:

$$(|r1 - h1 \cdot s1 - h2 \cdot s2|)^{2} + (|r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1}|)^{2}$$

$$(r1 - h1 \cdot s1 - h2 \cdot s2) \cdot \overline{(r1 - h1 \cdot s1 - h2 \cdot s2)} + (r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1}) \cdot \overline{(r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1})}$$

$$(r1 - h1 \cdot s1 - h2 \cdot s2) \cdot \overline{(r1 - h1 \cdot \overline{s1} - h2 \cdot \overline{s2})} + (r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1}) \cdot \overline{(r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1})}$$

$$(r1 - h1 \cdot s1 - h2 \cdot s2) \cdot \overline{(r1 - h1 \cdot \overline{s1} - h2 \cdot \overline{s2})} + (r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1}) \cdot \overline{(r2 + h1 \cdot s2 - h2 \cdot \overline{s1})}$$

$$(r1 - h1 \cdot s1 - h2 \cdot s2) \cdot \overline{(r1 - h1 \cdot \overline{s1} - h2 \cdot \overline{s2})} + (r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1}) \cdot \overline{(r2 + h1 \cdot s2 - h2 \cdot \overline{s1})}$$

$$(r1 - h1 \cdot s1 - h2 \cdot s2) \cdot \overline{(r1 - h1 \cdot \overline{s1} - h2 \cdot \overline{s2})} + (r2 + h1 \cdot \overline{s2} - h2 \cdot \overline{s1}) \cdot \overline{(r2 + h1 \cdot s2 - h2 \cdot \overline{s1})}$$

 $r1\cdot\overline{r1} + r2\cdot\overline{r2} - r1\cdot\overline{s1}\cdot\overline{h1} - r1\cdot\overline{s2}\cdot\overline{h2} + h1\cdot\overline{r2}\cdot\overline{s2} - h2\cdot\overline{r2}\cdot\overline{s1} - s1\cdot\overline{h1}\cdot\overline{r1} - r2\cdot\overline{s1}\cdot\overline{h2} + r2\cdot\overline{s2}\cdot\overline{h1} - s2\cdot\overline{h2}\cdot\overline{r1} + s1\cdot\overline{h1}\cdot\overline{s1}\cdot\overline{h1} \dots + s1\cdot\overline{h2}\cdot\overline{s1}\cdot\overline{h2} + s2\cdot\overline{h1}\cdot\overline{s2}\cdot\overline{h1} + s2\cdot\overline{h2}\cdot\overline{s2}\cdot\overline{h2}$

 $(|r1|)^2 + (|r2|)^2 - r1 \cdot \overline{s1} \cdot \overline{h1} - r1 \cdot \overline{s2} \cdot \overline{h2} + h1 \cdot \overline{r2} \cdot \overline{s2} - h2 \cdot \overline{r2} \cdot \overline{s1} - s1 \cdot h1 \cdot \overline{r1} - r2 \cdot s1 \cdot \overline{h2} + r2 \cdot s2 \cdot \overline{h1} - s2 \cdot h2 \cdot \overline{r1} \dots + (|s1|)^2 \cdot (|h1|)^2 + (|s1|)^2 \cdot (|h2|)^2 + (|s2|)^2 \cdot (|h1|)^2 + (|s2|)^2 \cdot (|h2|)^2$

 $\left[\left(\left| h1 \right| \right)^2 + \left(\left| h2 \right| \right)^2 \right] \cdot \left(\left| s1 \right| \right)^2 + \left(\left| r1 \right| \right)^2 + \left(\left| r2 \right| \right)^2 + \left(\left| s2 \right| \right)^2 \cdot \left(\left| h1 \right| \right)^2 + \left(\left| s2 \right| \right)^2 \cdot \left(\left| h2 \right| \right)^2 - r1 \cdot \overline{s1} \cdot \overline{h1} - r1 \cdot \overline{s2} \cdot \overline{h2} \dots + h1 \cdot r2 \cdot s2 - h2 \cdot r2 \cdot \overline{s1} - s1 \cdot h1 \cdot r1 - r2 \cdot s1 \cdot h2 + r2 \cdot s2 \cdot h1 - s2 \cdot h2 \cdot r1 \right]$

 $\frac{\left[\left(|h1|\right)^{2} + \left(|h2|\right)^{2}\right] \cdot \left(|s2|\right)^{2} + \left(|r1|\right)^{2} + \left(|r2|\right)^{2} + \left[\left(|h1|\right)^{2} + \left(|h2|\right)^{2}\right] \cdot \left(|s1|\right)^{2} - r1 \cdot \overline{s1} \cdot \overline{h1} - r1 \cdot \overline{s2} \cdot \overline{h2} \dots + h1 \cdot r2 \cdot s2 - h2 \cdot r2 \cdot s1 - s1 \cdot h1 \cdot r1 - r2 \cdot s1 \cdot h2 + r2 \cdot s2 \cdot h1 - s2 \cdot h2 \cdot r1 }$

Sistemas de Comunicação Digital II

$$\begin{bmatrix} (|h1|)^2 + (|h2|)^2 \end{bmatrix} \cdot (|s1|)^2 - r1 \cdot \overline{s1} \cdot \overline{h1} - h2 \cdot \overline{r2} \cdot \overline{s1} - s1 \cdot h1 \cdot \overline{r1} - r2 \cdot s1 \cdot \overline{h2} \dots \\ + \begin{bmatrix} (|h1|)^2 + (|h2|)^2 \end{bmatrix} \cdot (|s2|)^2 - r1 \cdot \overline{s2} \cdot \overline{h2} + h1 \cdot \overline{r2} \cdot \overline{s2} + r2 \cdot s2 \cdot \overline{h1} - s2 \cdot h2 \cdot \overline{r1} \dots \\ + (|r1|)^2 + (|r2|)^2 \end{bmatrix}$$

O detetor MLD busca encontrar s1 e s2 na constelação de referência tal que a expressão acima seja minimizada. Para tanto basta minimizar de forma independente as duas seguintes expressões (foi desprezado o termo |r1|²+|r2|² pois não é afetado pela busca dos símbolos s1 e s2 na constelação de referência):

 $\left[\left(|h1|\right)^{2} + \left(|h2|\right)^{2}\right] \cdot \left(|s1|\right)^{2} - r1 \cdot s1 \cdot h1^{*} - h2 \cdot r2 \cdot s1^{*} - s1 \cdot h1 \cdot r1^{*} - r2 \cdot s1 \cdot h2^{*} \rightarrow o$ MLD varre a constelação de referência buscando achar o valor para o símbolo s1 que minimiza o módulo do número complexo resultante desta expressão

 $\left[\left(|h1|\right)^{2} + \left(|h2|\right)^{2}\right] \cdot \left(|s2|\right)^{2} - r1 \cdot s2 \cdot h2^{*} + h1 \cdot r2 \cdot s2 + r2 \cdot s2 \cdot h1^{*} - s2 \cdot h2 \cdot r1^{*} \rightarrow o \text{ MLD varre a constelação de referência buscando achar o valor para o símbolo s2 que minimiza o módulo do número complexo resultante desta expressão$

Uma simplificação adicional pode ser obtida para efeito de o MLD varrer a constelação de referência buscando achar o valor para o símbolo s1 (e s2) que minimiza o módulo do número complexo resultante das duas equações anteriores.

Façamos a dedução da simplificação para a equação abaixo, a qual terá o módulo do número complexo resultante minimizado em função de s1:

$$\left[\left(|h1|\right)^{2} + \left(|h2|\right)^{2}\right] \cdot \left(|s1|\right)^{2} - r1 \cdot \overline{s1} \cdot \overline{h1} - h2 \cdot \overline{r2} \cdot \overline{s1} - s1 \cdot h1 \cdot \overline{r1} - r2 \cdot s1 \cdot \overline{h2}$$

Analisemos na equação acima o termo $-r1\cdot\overline{s1}\cdot\overline{h1} - h2\cdot\overline{r2}\cdot\overline{s1} - s1\cdot h1\cdot\overline{r1} - r2\cdot s1\cdot\overline{h2}$

Este termo pode ser colocado na seguinte forma:

$$(-h_{1}\cdot\overline{r_{1}} - r_{2}\cdot\overline{h_{2}})\cdot s_{1} - (r_{1}\cdot\overline{h_{1}}\cdot\overline{s_{1}} + h_{2}\cdot\overline{r_{2}}\cdot\overline{s_{1}})$$

$$(-r_{1}\cdot\overline{h_{1}} - h_{2}\cdot\overline{r_{2}})\cdot\overline{s_{1}} - s_{1}\cdot(h_{1}\cdot\overline{r_{1}} + r_{2}\cdot\overline{h_{2}})$$

$$-\overline{s_{1}}\cdot(r_{1}\cdot\overline{h_{1}} + h_{2}\cdot\overline{r_{2}}) - s_{1}\cdot(h_{1}\cdot\overline{r_{1}} + r_{2}\cdot\overline{h_{2}})$$

$$-\overline{s_{1}}\cdot(r_{1}\cdot\overline{h_{1}} + h_{2}\cdot\overline{r_{2}}) - [\overline{s_{1}}\cdot(\overline{h_{1}}\cdot\overline{r_{1}} + \overline{r_{2}}\cdot\overline{h_{2}})]$$
mas $r_{1}\cdot\overline{h_{1}} + h_{2}\cdot\overline{r_{2}} = s_{1}c$ sendo $s_{1}c = \widetilde{S_{1}} \longrightarrow s_{1}da$ $\widetilde{S_{1}}$ do combiner (ver slide (7) figura (a))
E daí o termo em análise simplifica para a forma:

$$-\overline{s_{1}}\cdot\overline{s_{1}c} - (\overline{s_{1}}\cdot\overline{s_{1}c})$$

 $-\overline{s1} \cdot s1c - s1 \cdot \overline{s1c}$

E daí o termo em análise simplifica para a forma:

$$-\overline{s1} \cdot s1c - \overline{(\overline{s1} \cdot s1c)}$$
$$-\overline{s1} \cdot s1c - s1 \cdot \overline{s1c}$$

mas

sendo

$$(|s_1 - s_1c|)^2 = (s_1 - s_1c) \cdot \overline{(s_1 - s_1c)} = (s_1 - s_1c) \cdot \overline{(s_1 - s_1c)} = s_1 \cdot \overline{s_1} - s_1 \cdot \overline{s_1c} - s_1 \cdot \overline{s_1} - s_1 \cdot \overline{s_1c} = (|s_1|)^2 + (|s_1c|)^2 - s_1 \cdot \overline{s_1c} - s_1 \cdot \overline{s_1} - s_1 \cdot \overline{s_1$$

Daí o termo em análise pode ser escrito como

 $(|s_1 - s_1c|)^2 - [(|s_1|)^2 + (|s_1c|)^2]$

Portanto, a equação a ser minimizada em função dos valores de s1 obtidos da constelação de referência pode ser escrita como:

$$\left[(|h1|)^{2} + (|h2|)^{2} \right] \cdot (|s1|)^{2} - r1 \cdot \overline{s1} \cdot \overline{h1} - h2 \cdot \overline{r2} \cdot \overline{s1} - s1 \cdot h1 \cdot \overline{r1} - r2 \cdot s1 \cdot \overline{h2} = \left[(|h1|)^{2} + (|h2|)^{2} \right] \cdot (|s1|)^{2} + \left[(|s1 - s1c|)^{2} - \left[(|s1|)^{2} + (|s1c|)^{2} \right] \cdot (|s1|)^{2} + (|s1c|)^{2} \right] \cdot (|s1|)^{2} + (|s1c|)^{2} +$$

Mas o termo |s1c|² adicionado à equação acima pode ser desprezado, pois não é afetado pela busca do símbolo s1 na constelação de referência que minimiza a equação. Daí a equação a ser minimizada em função de s1 pode ser simplificada para a forma:

$$\left[(|h1|)^{2} + (|h2|)^{2} - 1 \right] \cdot (|s1|)^{2} + (|s1 - s1c|)^{2}$$

O bloco "detector" (vide figura (a) slide (7)) testa todos os M símbolos IQ do alfabeto A da modulação, "experimentando" cada um dos M símbolos no argumento s1 da expressão. O s1 que minimiza esta expressão é identificado como o s1 transmitido.

Fazendo a mesma análise, a equação a ser minimizada em função de s2 pode ser simplificada para a forma:

$$\left[(|h1|)^{2} + (|h2|)^{2} - 1 \right] \cdot (|s2|)^{2} + (|s2 - s2c|)^{2}$$

O bloco "detector" (vide figura (a) slide (7)) testa todos os *M* símbolos IQ do alfabeto A da modulação, "experimentando" cada um dos *M* símbolos no argumento s2 da expressão. O s2 que minimiza esta expressão é identificado como o s2 transmitido.

 $s_{2c} = S_2 \rightarrow saida S_2$ do combiner (ver slide (7) figura (a))

Nota:
$$d^2(z_1, z_2) = |z_1 - z_2|^2 = (z_1 - z_2)(z_1 - z_2)^* = (z_1 - z_2)(z_1^* - z_2^*)$$

Sistemas de Comunicação Digital II

Cap V.2 – Apêndice A