

Codificação de Canal: Correção de erro por codificação em bloco.

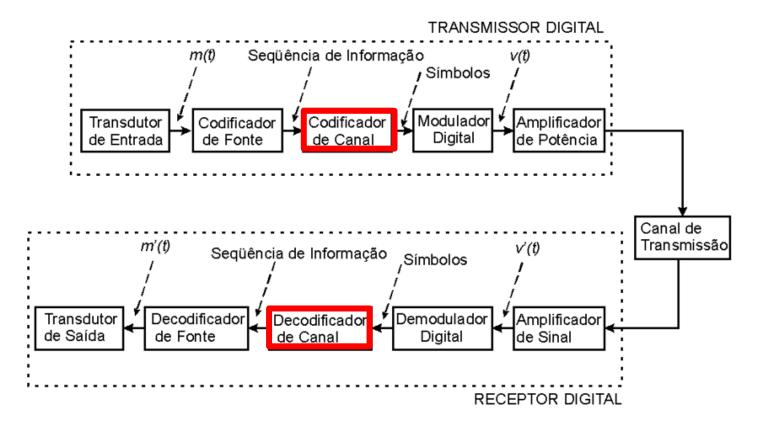
Departamento de Eletrônica e Computação

Centro de Tecnologia

ELC1120 – TELECOMUNICAÇÕES II

Profa. Candice Müller Prof. Fernando DeCastro

Codificador de Canal



 Codificador de Canal: A Codificação de Canal é o processo responsável em um sistema digital por manter a taxa de erro dentro de um limite máximo aceitável pelo usuário.

Codificador de Canal

- Quando informação digital é enviada através de um canal de transmissão, ruído e interferência inerentes a qualquer canal prático degradam o sinal de forma que os dados recebidos contêm erros.
- O usuário do sistema de transmissão digital geralmente estabelece uma taxa de erro máxima aceitável uma mensagem errada em $1x10^6$ mensagens recebidas, por exemplo (i.e., uma taxa de erro de 1×10^{-6}) acima da qual os dados recebidos não são considerados utilizáveis pelo usuário. Esta taxa de erro máxima aceitável depende da informação que transita pelo canal.
- A título de comparação, a taxa máxima de erro permitida para transmissão de voz através de telefonia celular é muito maior do que a taxa exigida para transmissão de dados, por exemplo (porque, na pior das hipóteses, mesmo sob uma alta taxa de erro e consequente distorção, o sistema auditivo humano é capaz de compreender o significado das frases pelo contexto da conversa, o que já não acontece quando dois computadores trocam dados).

Codificador de Canal

- O Codificador de Canal é o responsável em um sistema digital por manter a taxa de erro dentro de um limite máximo aceitável pelo usuário.
- A possibilidade do uso de codificação para controlar com eficiência a taxa de erro de um sistema de comunicação digital foi demonstrada por Shannon em 1948, através do Teorema Fundamental de Shannon, já discutido no Cap II das notas de aula:

Teorema Fundamental de Shannon:

Se a taxa (= velocidade) de transmissão R [bits/s] da informação a ser enviada pelo canal é menor que uma quantidade C [bits/s] denominada de Capacidade do Canal, então a comunicação através do canal pode ser estabelecida com probabilidade de erro tão baixa quanto se deseje, através do uso de um código adequado para correção de erro.

Códigos corretores de erro

- Vimos que o Teorema Fundamental de Shannon estabelece a existência de um código corretor de erro tal que a informação pode ser transmitida através do canal de comunicação com uma taxa de erro arbitrariamente baixa, caso a taxa de transmissão R [bits/s] seja menor ou igual à capacidade do canal C [bits/s].
- Estudaremos os membros mais importantes de duas grandes classes de códigos para correção de erro:

os códigos de bloco e os códigos convolucionais.

Códigos de Bloco

• Um código de bloco pode ser considerado como um operador $\theta\{\cdot\}$, tal que $C = \theta\{X\}$, onde:

 $X = \{\underline{x}_i\} = \{\underline{x}_0, \underline{x}_1, \dots, \underline{x}_{M-1}\}$ é o conjunto de M possíveis mensagens \underline{x}_i a serem codificadas e

 $C = \{\underline{c_i}\} = \{\underline{c_0}, \underline{c_1}, \dots, \underline{c_{M-1}}\}$ é o conjunto de M possíveis palavrascódigo c_i resultantes da codificação, com $i = 0, 1, \dots, M - 1$.

- O operador $m{ heta}\{\cdot\}$ efetua um mapeamento unívoco entre cada mensagem \underline{x}_i e a respectiva palavra-código \underline{c}_i .
- O <u>conjunto de caracteres do código</u> ou <u>alfabeto do código</u> é o conjunto $\mathbf{A} = \{a_0, a_1, ..., a_{D-1}\}$ composto por D elementos, de cuja composição são formadas cada mensagem e sua respectiva palavra-código (para códigos binários $\mathbf{A} = \{0,1\}$).

Códigos de Bloco

- Cada mensagem $\underline{x}_i \in X$ é considerada como um vetor $\underline{x}_i = [x_{i(k-1)}x_{i(k-2)}...x_{i1}x_{i0}]$ de k componentes, $x_{ij} \in A$, j = k-1, k-2, ... 1,0.
- Visto que os k componentes da i-ésima mensagem \underline{x}_i pertencem ao alfabeto A, é válida a relação de pertinência $\underline{x}_i \in A^k$.
- Da mesma forma, cada palavra-código $\underline{c_i} \in \mathbf{C}$ é considerada como um vetor $\underline{c_i} = \left[c_{i(n-1)}c_{i(n-2)}\dots c_{i1}c_{i0}\right]$ de n componentes $c_{ij} \in \mathbf{A}$, j = n-1, n-2, ... 1,0.
- Visto que os n componentes da i-ésima palavra-código \underline{c}_i pertencem ao alfabeto A, é válida a relação de pertinência $\underline{c}_i \in A^n$.

Por exemplo: a palavra-código binária 0101, de n=4 bits, é representada pelo vetor $c=[0\ 1\ 0\ 1],$

$$\underline{c} \in A^4$$

$$\mathbf{A} = \{0,1\}$$

Códigos de Bloco binários

- Um código de bloco binário $\boldsymbol{\theta}\{\cdot\}$ mapeia um conjunto $\boldsymbol{X}=\{\underline{x}_i\}=\{\underline{x}_0,\underline{x}_1,\dots,\underline{x}_{M-1}\}$ de $M=2^k$ mensagens binárias, cada uma delas com k bits, em um conjunto $\boldsymbol{C}=\{\underline{c}_i\}=\{\underline{c}_0,\underline{c}_1,\dots,\underline{c}_{M-1}\}$ palavras-código binárias, cada uma delas com n bits, onde n>k.
- Um código de bloco $\theta\{\cdot\}$ binário cujas mensagens a serem codificadas apresentam k bits e são mapeadas em palavras-código de n bits é representado pelo operador $\theta(n,k)\{\cdot\}$ ou simplesmente $\theta(n,k)$.
- Um código $\theta(n,k)$ é <u>sistemático</u> quando cada palavra-código de n bits é formada pelos k bits da respectiva mensagem associada, acrescidos (por justaposição) de r bits adicionais destinados ao controle e correção de erros, denominados de bits de paridade.

Códigos de Bloco binários

- Portanto, em um código sistemático cada mensagem contendo k bits de informação é expandida em uma palavra-código de n=k+r bits onde r é o número de bits representativos da informação redundante adicionada visando o controle e correção de erro.
- Um código $\theta(n,k)$ é não-sistemático quando nas palavras-códigos de n bits não aparecem explicitamente representados os k bits de informação da respectiva mensagem associada.
- É possível converter um código não-sistemático em um código sistemático. Em função disto, nossa atenção será dada aos códigos sistemáticos.
- Tanto o código não sistemático, quanto o código convertido em um código sistemático, possuem a mesma capacidade de correção e de detecção, por isso são ditos códigos equivalentes.

Códigos de Bloco binários

• Exemplo 1 : Por exemplo, o código $\theta(4,3)$ do codebook abaixo é sistemático, porque cada palavra-código \underline{c}_i de n=4 bits é formada pela justaposição de 1 bit de paridade aos k=3 bits de informação da mensagem \underline{x}_i associada.

• Observe que, como n>k, no conjunto de todas as 2^n possíveis palavras-códigos de n bits existem 2^n - 2^k elementos que não são associados a qualquer elemento do conjunto $X=\{\underline{x}_i\}=\{\underline{x}_0,\underline{x}_1,...,\underline{x}_{M-1}\}$ de $M=2^k$ mensagens binárias de

k bits.

• Por exemplo, para o código binário $\theta(4,3)$ ao lado, existem $2^n-2^k=2^4-2^3=8$ elementos no conjunto de todas as $2^n=2^4=16$ possíveis palavras-códigos de 4 bits sem associação com qualquer mensagem do conjunto

 $X = \{000,001,010,011,100,101,110,111\}.$

Mensagem x_i	Palavra-código c_i
000	0000
001	0011
010	0101
011	0110
100	1001
101	1010
110	1100
111	1111

Razão de codificação

- O tempo $n\tau_s$ de duração de uma palavra-código deve ser igual ao tempo de duração $k\tau_x$ de uma mensagem, onde τ_s representa a largura (duração) dos bits em uma palavra-código e au_{χ} representa a largura dos bits em uma mensagem. Se esta condição não é obedecida o espectro da informação codificada será alterado, conforme já visto no Cap I das notas de aula.
- Assim, se $n au_{\scriptscriptstyle S}$ = $k au_{\scriptscriptstyle X}$, então a razão de codificação R_c de um código de bloco é $R_c = k/n = \tau_s/\tau_x$, (n > k).

Peso de uma Palavra-Código

- O peso de uma palavra-código é definido como o número de dígitos "1" nela presentes.
- O conjunto de todos os pesos de um código constitui a distribuição de pesos do código.
- Quando todas as M palavras-código têm pesos iguais, o código é denominado de **<u>código de peso constante</u>**.
- Por exemplo, o peso da palavra-código $c = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$ é 2.

Códigos de Bloco – códigos polinomiais

- O processo de codificação/decodificação de um código de bloco baseia-se na propriedade algébrica de que o conjunto de palavras-código $C = \{c_i\}$ $\{\underline{c}_0,\underline{c}_1,\dots,\underline{c}_{M-1}\}$ pode ser mapeado em um **conjunto de polinômios** $\{C_i(p)\}=$ $\{C_0(p), C_1(p), ... C_{M-1}(p)\}.$
- Os componentes do **vetor** $c_i = [c_{i(n-1)} \ c_{i(n-2)} \ ... \ c_{i1} \ c_{i0}]$ que representa a i-ésima palavra-código correspondem aos coeficientes do polinômio $C_i(p) = c_{i(n-1)}p^{n-1} + c_{i(n-1)}p^{n-1}$ $c_{i(n-2)}p^{n-2}+...+c_{i1}p+c_{i0}$ associado à palavra-código.
- A mesma propriedade algébrica pode ser aplicada sobre o conjunto de mensagens $X = \{x_i\} = \{x_0, x_1, \dots, x_{M-1}\}$ de modo que este também pode ser mapeado em um conjunto de polinômios $\{X_i(p)\} = \{X_0(p), X_1(p) \cdots X_{M-1}(p)\}$
- Os componentes do **vetor** $x_i = [x_{i(n-1)} \ x_{i(n-2)} \ \dots \ x_{i1} \ x_{i0}]$ que representa a i-ésima mensagem correspondem aos coeficientes do polinômio $X_i(p) = x_{i(n-1)}p^{n-1} +$ $x_{i(n-2)}p^{n-2}+...+x_{i1}p+x_{i0}$ associado à mensagem.
- Por este motivo os códigos de bloco são também denominados de códigos polinomiais.

Códigos de Bloco – códigos polinomiais

Por exemplo, a representação polinomial do código do Exemplo 1 é mostrada na Tabela 2.

Tabela 2 – Representação polinomial do código do Exemplo 1

Mensagem x_i	Polinômio $X_i(p)$	Palavra-código c_i	Polinômio $\mathcal{C}_i(p)$
000	0	0000	0
001	1	0011	p + 1
010	p	0101	$p^2 + 1$
011	p+1	0110	$p^{2} + p$
100	p^2	1001	$p^3 + 1$
101	$p^2 + 1$	1010	$p^{3} + p$
110	$p^{2} + p$	1100	$p^3 + p^2$
111	$p^2 + p + 1$	1111	$p^3 + p^2 + p + 1$

Códigos de Bloco – códigos polinomiais

- O processo de codificação/decodificação envolve operações aritméticas de adição e multiplicação realizadas sobre o conjunto de polinômios $\{C_i(p)\}=\{C_0(p),C_1(p)\cdots C_{M-1}(p)\}$ que representam as palavras-código, conforme veremos.
- Um código corretor de erro deve ser tal que o conjunto $\{C_i(p)\}$ e as operações aritméticas sobre ele definidas obedeçam a determinadas restrições, caso contrário a unicidade e o custo computacional do processo de codificação/decodificação resultarão prejudicados.
- Especificamente, os coeficientes dos polinômios em $\{C_i(p)\}$ devem pertencer a um tipo especial de conjunto denominado de campo algébrico.
- Um campo algébrico é uma entidade matemática estudada em Álgebra Linear.

Um campo F é um conjunto de elementos que permite duas operações sobre seus elementos – adição e multiplicação – e que satisfaz aos seguintes propriedades:

Adição

- 1- O conjunto **F** é <u>fechado</u> sob adição, i.e., se $a,b \in F$ então $a + b \in F$.
- 2- A adição em **F** é associativa, i.e., se $a,b,c \in \mathbf{F}$ então a+(b+c)=(a+b)+c.
- 3- A adição em **F** é comutativa, i.e., se $a,b \in \mathbf{F}$ então a + b = b + a.
- 4- O conjunto **F** contém um único elemento denominado **zero**, representado por "0", que satisfaz a condição a + 0 = a, $\forall a \in \mathbf{F}$.
- 5- Cada elemento em **F** tem o seu elemento negativo (simétrico). Se $b \in \mathbf{F}$ então seu simétrico é denotado por - b tal que b + (-b) = 0. Se $a \in \mathbf{F}$, então a subtração a - b entre os elementos a e b é definida como a + (-b).

Multiplicação

- 1- O conjunto \mathbf{F} é <u>fechado</u> sob multiplicação, i.e., se $a,b \in \mathbf{F}$ então $ab \in \mathbf{F}$.
- 2- A multiplicação em **F** é associativa, i.e., se **F** \in c b a , , então a. (bc)=(ab)c
- 3- A multiplicação em **F** é comutativa, i.e., se $a,b \in \mathbf{F}$ então ab = ba.
- 4- A multiplicação em **F** é distributiva sobre a adição, i.e., se $a,b,c \in \mathbf{F}$ então a(b+c)=ab+ac.
- 5- O conjunto F contém um único elemento denominado identidade, representado por "1", que satisfaz a condição $1a = a, \forall a \in \mathbf{F}$.
- 6- Cada elemento de **F**, exceto o elemento 0 , possui um elemento **inverso**. Assim, se $b \in \mathbf{F}$ e $b \neq 0$ então o inverso de b é definido como b^{-1} tal que bb^{-1} = 1. Se $a \in \mathbf{F}$, então a divisão a / b entre os elementos $a \in b$ é definida como ab^{-1} .

O conjunto \Re dos números reais é um campo algébrico com infinitos elementos, assim como também o é o conjunto dos números complexos C. Estes dois conjuntos obedecem as propriedades dos campos algébricos descritas anteriormente.

- Um campo algébrico finito com D elementos é denominado de Campo de Galois (Galois Field) e é designado por GF(D).
- Nem para todos os valores de D é possível formar um campo.
- Em geral, quando D é primo (ou uma potência inteira de um número primo) é possível construir o campo finito $\mathbf{GF}(D)$ consistindo dos elementos $\{0,1,\cdots,D-1\}$ 1}, desde que as operações de adição e multiplicação sobre $\mathbf{GF}(D)$ sejam operações **módulo D**.

Nota: Uma operação op é módulo D quando pode ser representada por $(a \ op \ b) mod \ D$, onde $x \ mod \ y$ é o operador que resulta no resto da divisão x/y.

Por exemplo, a operação de **soma módulo 5** entre os números **4** e **3**, (4 op 3) mod 5, resulta em **2** visto que o resto da divisão 7/5 é 2, portanto $(4 + 3) \mod 5 = 2$.

- No nosso caso, utilizaremos um Campo de Galois 2 GF(2).
- O **GF**(2) é formado pelo conjunto {0,1} e pelas operações módulo 2 de soma e multiplicação dadas pelas Tabelas 3 e 4.

Tabela 3: Soma sobre GF (2)			
+	0	1	
0	0	1	
1	1	0	

Tabela 4: Multiplicação sobre GF (2)			
*	0	1	
0	0	0	
1	0	1	

Note nas Tabelas 3 e 4 que:

- A soma entre dois elementos a e b pertencentes a GF(2) é implementada pela operação lógica $a \oplus b$ (ou $a \times CR b$) e que
- A multiplicação entre dois elementos a e b pertencentes a GF(2) é implementada pela operação lógica a.b (ou a AND b).

- Dada a facilidade de implementação com portas lógicas AND e XOR, é usual os códigos corretores serem construídos em GF(2).
- Assim, um código corretor de erro binário é tal que os coeficientes dos polinômios em $\{C_i(p)\}$ pertencem a GF(2);
- $A = \{0,1\}$ e as operações aritméticas realizadas sobre o conjunto de polinômios $\{C_i(p)\} = \{C_0(p), C_1(p) \cdots C_{M-1}(p)\}$ (ou, equivalentemente, sobre o conjunto de palavras-código $C = \{\underline{c}_i\} = \{\underline{c}_0, \underline{c}_1, \dots, \underline{c}_{M-1}\}$) durante o processo de codificação/decodificação obedecem às Tabelas 3 e 4.

- Suponhamos que c_i e c_j sejam duas palavras-código quaisquer do código $\boldsymbol{\theta}(n,k)$.
- Uma medida da diferença (distância) entre duas palavras-código é o número de bits em posições correspondentes que diferem entre si.
- Esta medida é denominada de <u>Distância de Hamming</u> e é denotada por d_{ij} .
- Por exemplo, sejam c_i = [0 1 0 1] e c_j = [1 0 0 0]. Então d_{ij} = 3.
- Observe que d_{ij} sempre satisfaz a condição $0 < d_{ij} \le n, i \ne j$, para duas palavras-código c_i e c_j , ambas de n bits (por definição, em um código $\theta(n,k)$, $c_i \neq c_j$, $\forall i \in \forall j \text{ com } i \neq j$).
- O menor valor no conjunto $\{d_{ij}\}$, $i,j=0,1,\ldots,M-1,\ i\neq j$, $M=2^k$ é denominado **distância mínima** do código e é denotado como d_{min} .

- Por exemplo, $d_{min}=2$ para o código do Exemplo 1, {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111}.
- A Distância de Hamming d_{ij} é uma medida do grau de separação entre duas palavras-código $\underline{c_i}$ e c_j .
- Portanto, d_{min} está associado à capacidade do código $\boldsymbol{\theta}(n,k)$ em identificar palavras-código demoduladas no receptor quando estas são recebidas com erro, como consequência do ruído e interferência presentes no canal.
- Em outras palavras, quanto maior d_{min} maior a capacidade de um código $\theta(n,k)$ detectar e corrigir erros.

Demonstra-se que:

- Seja $\theta(n,k)$ um código corretor binário;
- seja d o número máximo de erros que $\theta(n,k)$ é capaz de **detetar**;
- seja t o número máximo de erros que $\theta(n,k)$ é capaz de corrigir;
- seja d_{min} a distância mínima de $\boldsymbol{\theta}(n,k)$; Então:

$$\boldsymbol{\theta}(n,k)$$
 detecta d erros:

$$d = d_{min} - 1$$

$$\theta(n,k)$$
 corrige t erros:

$$t = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor$$

sendo [.] o operador que resulta no inteiro mais próximo e menor que o argumento.

Por exemplo, $d_{min}=2$ para o código $\boldsymbol{\theta}(4,3)$ da Tabela 1.

Temos que

$$d = d_{min} - 1 = 2 - 1 = 1$$

e

$$t = \left\lfloor \frac{d_{min} - 1}{2} \right\rfloor = \left\lfloor \frac{2 - 1}{2} \right\rfloor = 0$$

Portanto o código $\theta(4,3)$ da Tabela 1 <u>detecta no máximo 1 erro por palavracódigo</u>, <u>mas não tem capacidade de correção</u>.

De fato, este código é um simples código parity-check.

- Seja a i-ésima mensagem de um código binário $oldsymbol{ heta}(n,k)$ representada pelo vetor $x_i = [x_{i0} \ x_{i1} \dots x_{i(k-1)}]$ e seja a i -ésima palavra-código de $m{ heta}(n,k)$ representada pelo vetor $\underline{c_i} = [c_{i0} \ c_{i1} \ ... \ c_{i(n-1)}]$, onde i=0,1,...,M-1 $1.M = 2^k$.
- O processo de codificação da mensagem $x_i = [x_{i0} \ x_{i1} \ ... \ x_{i(k-1)}]$ na respectiva palavra-código $c_i = [c_{i0} \ c_{i1} \dots c_{i(n-1)}]$ efetuado por um código binário $\theta(n,k)$ pode ser representado em forma matricial por

$$\underline{c_i} = \underline{x_i} \mathbf{G}$$

onde a matriz $G_{k \times n}$ é denominada de matriz geradora do código $\theta(n,k)$ e é dada por:

$$\mathbf{G} = \begin{bmatrix} g_{00} & g_{01} & \cdots & g_{0(n-1)} \\ g_{10} & g_{11} & \cdots & g_{1(n-1)} \\ \vdots & \vdots & & \vdots \\ g_{(k-1)0} & g_{(k-1)1} & \cdots & g_{(k-1)(n-1)} \end{bmatrix}$$

ullet Podemos interpretar a matriz ${f G}$ como um conjunto de k vetores-linha g_j , j=0, 1, ..., k-1, tal que

$$\mathbf{G} = \begin{bmatrix} g_{00} & g_{01} & \cdots & g_{0(n-1)} \\ g_{10} & g_{11} & \cdots & g_{1(n-1)} \\ \vdots & \vdots & & \vdots \\ g_{(k-1)0} & g_{(k-1)1} & \cdots & g_{(k-1)(n-1)} \end{bmatrix} = \begin{bmatrix} \leftarrow & \underline{g}_0 & \rightarrow \\ \leftarrow & \underline{g}_1 & \rightarrow \\ \vdots & & \vdots \\ \leftarrow & \underline{g}_{(k-1)} & \rightarrow \end{bmatrix}$$

• Desta maneira, de $\underline{c_i} = \underline{x_i} \textbf{\textit{G}}$, cada palavra-código $c_i = [c_{i0} \ c_{i1} \ ... \ c_{i(n-1)}]$ é simplesmente uma combinação linear dos vetores g_j com coeficientes da combinação determinados pela mensagem associada $x_i = [x_{i0} \ x_{i1} \ ... \ x_{i(k-1)}]$, isto é:

$$\underline{c_i} = x_{i0} \underline{g_0} + x_{i1} \underline{g_1} + \dots + x_{i(k-1)} \underline{g_{(k-1)}}$$

Exemplo 2: Verifique se a matriz **G** é a matriz geradora do código $\theta(4,3)$ da Tabela 1.

Solução: Cada palavra-código $\underline{c_i} = [c_{i0} \ c_{i1} \dots c_{i(n-1)}]$ de n=4 bits é gerada através de $\underline{c_i} = \underline{x_i} \mathbf{G}$ a partir da respectiva mensagem $\underline{x_i} = [x_{i0} \ x_{i1} \dots x_{i(k-1)}]$ de k=3 bits. No total, existem $2^k=8$ palavras-código $\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$ em $\theta(4,3)$. Assim,

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

\underline{x}_i	$\underline{x}_i \mathbf{G} = \underline{c}_i$	\underline{x}_i	$\underline{x}_i \mathbf{G} = \underline{c}_i$
[0 0 0]	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$	[1 0 0]	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$
[0 0 1]	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$	[1 0 1]	$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$
[0 1 0]	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$	[1 1 0]	$\begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$
[0 1 1]	$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$	[1 1 1]	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$

Portanto **G** é geradora de $\theta(4,3)$.

- Qualquer matriz geradora **G** de um código $\theta(n,k)$ pode, através de operações elementares em suas linhas e permutações em suas colunas, ser reduzida à forma sistemática quando, então, o código gerado é sistemático.
- Uma matriz geradora **G** encontra-se na forma sistemática quando

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_{k} & \mathbf{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & p_{00} & p_{01} & \cdots & p_{0(n-k-1)} \\ 0 & 1 & 0 & \cdots & 0 & p_{10} & p_{11} & \cdots & p_{1(n-k-1)} \\ \vdots & \vdots & \vdots & & \vdots & & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 & p_{(k-1)0} & p_{(k-1)1} & \cdots & p_{(k-1)(n-k-1)} \end{bmatrix}$$

onde \mathbf{I}_k é a matriz identidade $k \times k$ e \mathbf{P} é uma matriz $k \times (n-k)$ que determina os n-k bits de paridade na palavra-código c_i de n bits, a partir dos k bits da mensagem x_i . $\mathbf{G} = \begin{bmatrix} \mathbf{I}_{k} & \mathbf{P} \end{bmatrix}$

A matriz geradora do Exemplo 2 é dada por:

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

Está na forma sistemática e o código $\theta(4,3)$ gerado é um código sistemático, i.e., cada palavra-código de n bits é formada pelos k bits da respectiva mensagem associada, acrescidos (por justaposição) de n-k bits de paridade.

Mensagem x_i	Palavra-código c_i
000	0000
001	0011
010	0101
011	0110
100	1001
101	1010
110	1100
111	1111

- No contexto de comunicação digital, as palavras-código passam por um processo de modulação no transmissor e são enviadas através de um canal com ruído/interferência.
- Dois códigos que diferem somente na ordem (arranjo) de suas palavras-código, apresentam a mesma probabilidade de erro de decodificação no receptor, porque as distâncias de Hamming entre as palavras-código são as mesmas [Peterson]. Tais códigos são denominados equivalentes.
- Especificamente, o código $\theta_e(n,k)$ é equivalente ao código $\theta(n,k)$ se a matriz geradora G_e de $\theta_e(n,k)$ puder ser obtida através da permutação de colunas da matriz **G** geradora de $\theta(n,k)$ ou através de operações elementares realizadas entre as linhas de G.
- Uma operação elementar em GF(2) entre duas linhas de uma matriz consiste em permutar as linhas ou em substituir uma linha pela soma dela com outra linha.
- Assim sempre podemos transformar uma matriz **G** qualquer para a forma sistemática **G***, mantendo a equivalência entre os respectivos códigos gerados.

Exemplo 3: Dada a matriz geradora G, colocá-la na forma sistemática G*.

Verifique se **G*** gera um código equivalente ao gerado por **G**.

Solução: Visto que a matriz geradora é uma matriz $G_{3\times4}$, então o código gerado será um código $\theta(4,3)$.

G* pode ser obtida pelo seguinte conjunto de operações elementares feito sobre

as linhas de G:

$$\mathbf{G} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

Operação Elementar	Matriz G alterada
$L_0 \leftrightarrow L_2$	
	$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$
$L_{0} \leftarrow \left(L_{0} + L_{1}\right)$	$\begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$
$L_{\scriptscriptstyle 0} \leftarrow \left(L_{\scriptscriptstyle 0} + L_{\scriptscriptstyle 2}\right)$	$\mathbf{G}^* = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$

O código gerado por **G** é:

\underline{x}_i	$\underline{x}_i \mathbf{G} = \underline{c}_i$	\underline{x}_i	$\underline{x}_i \mathbf{G} = \underline{c}_i$
[0 0 0]	$\begin{bmatrix} 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix}$	[1 0 0]	$\begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}$
[0 0 1]	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$	[1 0 1]	$\begin{bmatrix} 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix}$
[0 1 0]	$\begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \end{bmatrix}$		
[0 1 1]	$\begin{bmatrix} 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix}$	[1 1 1]	$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \end{bmatrix}$

O código gerado por **G*** possui a mesma distância de Hamming do código gerado no Exemplo 2. Os códigos gerados por G* e G são equivalentes, porque diferem apenas no arranjo de suas palavras-código.

Seja um código $\theta(n,k)$ com matriz geradora G dada na forma sistemática,

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$$

- A *i*-ésima palavra-código $c_i = [c_{i0} \ c_{i1} \ ... \ c_{i(n-1)}]$ relaciona-se com a respectiva mensagem $x_i = [x_{i0} \ x_{i1} \dots x_{i(k-1)}]$ através de $c_i = x_i G$.
- Já que ${f G}$ encontra-se na forma sistemática, a palavra-código c_i pode ser decomposta em $c_i = [x_i \ a_i]$ onde $a_i = x_i \mathbf{P}$ é um vetor-linha que contém os n-k bits de paridade de c_i .
- Visto que $a_i = x_i \mathbf{P}$, e considerando que a soma em $\mathbf{GF}(2)$ é uma operação módulo 2, então

$$\underline{x_i}\mathbf{P} + \underline{a_i} = \underline{0}$$

que pode ser escrita matricialmente como $\begin{bmatrix} x_i & a_i \end{bmatrix} \begin{bmatrix} \mathbf{P} \\ \mathbf{I} \end{bmatrix} = \underline{0}$

$$\left[\underline{x_i} \ \underline{a_i}\right] \begin{bmatrix} \mathbf{P} \\ \mathbf{I}_{n-k} \end{bmatrix} = \underline{0}$$

Matriz de paridade transposta \mathbf{H}^T

Definindo

$$\mathbf{H}^T = \begin{bmatrix} \mathbf{P} \\ \mathbf{I}_{n-k} \end{bmatrix} \qquad \qquad \mathbf{H} = \begin{bmatrix} \mathbf{P}^T & \mathbf{I}_{n-k} \end{bmatrix}$$

Sendo

$$\mathbf{H} = (\mathbf{H}^T)^T = \begin{bmatrix} \mathbf{P} \\ \mathbf{I}_{n-k} \end{bmatrix}^T = [\mathbf{P}^T \quad (\mathbf{I}_{n-k})^T] = [\mathbf{P}^T \quad \mathbf{I}_{n-k}]$$

Temos que

$$\begin{bmatrix} \underline{c_i} & \mathbf{H}^T \\ \underline{\mathbf{R}_i} & \underline{a_i} \end{bmatrix} \begin{bmatrix} \mathbf{P} \\ \mathbf{I}_{n-k} \end{bmatrix} = \underline{0} \quad \rightarrow \quad \underline{c_i} \mathbf{H}^T = \underline{0}$$

• Portanto, de $c_i \mathbf{H}^T = \mathbf{0}$, infere-se que cada palavra-código do código $\boldsymbol{\theta}(n,k)$ é ortogonal a cada linha da matriz **H** (se $u \cdot \underline{v^T} = 0$ então os vetores \underline{u} e \underline{v} são ortogonais).

$$c_i \mathbf{H}^T = \underline{0}$$

- Deste modo, observa-se que a matriz H pode ser usada no receptor digital para detectar se ocorreu erro como consequência da degradação imposta pelo canal de transmissão.
- Seja c_i a palavra-código transmitida e y_i a palavra-código recebida,

Se
$$\underline{y_i}\mathbf{H}^T \neq 0$$
 então $\underline{y_i} \neq \underline{c_i}$ e, logo $\underline{y_i}$ apresenta erros.

Se
$$\underline{y_i}\mathbf{H}^T=0$$
 então $\underline{y_i}=\underline{c_i}$ e, logo $\underline{y_i}$ foi recebida sem erros.

• Por este motivo, $\mathbf{H}_{(n-k)\times n}$ é denominada de matriz de paridade.

Exemplo 4:

- (a) Determine a matriz de paridade **H** do código $\theta(4,3)$ do Exemplo 3.
- (b) Verifique se $\mathbf{G}\mathbf{H}^T = 0$.
- (c) Verifique se $c_i \mathbf{H}^T = \underline{0}$

Solução:

(a) A matriz geradora de $\theta(4,3)$ na forma sistemática é

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_3 & \mathbf{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \qquad \mathbf{H} = \begin{bmatrix} \mathbf{P}^T & \mathbf{I}_{n-k} \end{bmatrix} =$$

(b) Verificando se $\mathbf{G}\mathbf{H}^T = \underline{0}$:

$$GH^T =$$

Exemplo 4:

- (a) Determine a matriz de paridade **H** do código $\theta(4,3)$ do Exemplo 3.
- (b) Verifique se $\mathbf{G}\mathbf{H}^T = 0$.
- (c) Verifique se $c_i \mathbf{H}^T = \underline{0}$

Solução:

(a) A matriz geradora de $\theta(4,3)$ na forma sistemática é

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_{3} & \mathbf{P} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{H} = \begin{bmatrix} \mathbf{P}^{T} & \mathbf{I}_{n-k} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{H} = \begin{bmatrix} \mathbf{P}^T & \mathbf{I}_{n-k} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$$

(b) Verificando se $\mathbf{G}\mathbf{H}^T = 0$:

$$\mathbf{G}\mathbf{H}^{T} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

A Matriz de Paridade de um Código $\theta(n, k)$

(c) Verificando se $c_i H^T = \underline{0}$

A Matriz de Paridade de um Código $\theta(n, k)$

(c) Verificando se $c_i H^T = \underline{0}$

$$\begin{bmatrix}
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\ 1 \\ 1 \\ 1
\end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}
\begin{bmatrix} 0 & 0 & 1 & 1
\end{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}
\begin{bmatrix} 0 & 1 & 0 & 1
\end{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}
\begin{bmatrix} 0 & 1 & 1 & 0
\end{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}
\begin{bmatrix} 1 & 0 & 1 & 0
\end{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}
\begin{bmatrix} 1 & 1 & 0 & 0
\end{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}
\begin{bmatrix} 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0
\end{bmatrix}$$

Decodificação pela Mínima Distância (Decodificação ML - Maximum-Likelihood Decoding)

- No receptor digital, os n bits provenientes do demodulador, correspondentes à i-ésima palavra-código recebida são entregues ao decodificador do código $\boldsymbol{\theta}(n,k)$.
- Quando utilizada a decodificação pela mínima distância, o decodificador compara y_i com as $M=2^k$ possíveis palavras-código c_j de $\boldsymbol{\theta}(n,k)$, j= $0, 1, \dots, M-1$, e decide em favor daquela palavra-código (portanto, em favor da mensagem associada) que é mais próxima da palavra-código recebida em termos da Distância de Hamming.
- Matematicamente esta operação pode ser expressa por

$$\theta^{-1}\left\{\underline{y_i}\right\} = argmin_{\underline{c_j}} \left|\underline{y_i} - \underline{c_j}\right|_H \text{ onde } \underline{c_j} \in \mathbf{C},$$

$$\mathbf{C} = \left\{\underline{c_i}\right\} = \left\{\underline{c_0}, \underline{c_1}, \dots, \underline{c_{M-1}}\right\}$$

e $\left|y_i-c_j
ight|_H$ denota a Distância de Hamming entre a palavra código recebida $\underline{y_i}$ e a palavra código c_i pertencente ao conjunto ${\bf C}$.

Decodificação pela Mínima Distância (Decodificação ML - Maximum-Likelihood Decoding)

Embora a decodificação ML possa ser realizada através de

$$\theta^{-1}\left\{\underline{y_i}\right\} = argmin_{\underline{c_j}} \left|\underline{y_i} - \underline{c_j}\right|_{H},$$

existe uma maneira mais eficiente de implementar um decodificador ML, aproveitando as propriedades da matriz de paridade $\mathbf{H}_{(n-k) \times n}$ de um código $\theta(n,k)$, denominada de Decodificação por Arranjo Padrão (Standard Array Decoding).

- A desvantagem da decodificação ML é a necessidade de calcular $M=2^k$ Distâncias de Hamming para decodificar a palavra-código recebida.
- Veremos a seguir como reduzir este número de distâncias calculadas para 2^{n-k} utilizando o conceito de Arranjo Padrão, já que, na prática, usualmente n - k < k.

- Seja c_i a palavra-código transmitida pelo transmissor digital através do canal de transmissão e seja y_i a palavra-código recebida resultante na saída do demodulador do receptor digital.
- Devido degradação do sinal no canal, em consequência ruído/interferência, a palavra-código y_i recebida pode conter erros, de modo que y_i pode ser expressa por $y_i = c_i + e_i$

onde e_i é o vetor-linha de n bits que representa o padrão de erro (i.e., os bits errados em y_i) resultante da degradação do sinal no canal.

Palavra-código transmitida: $c_i = [0 \ 1 \ 0 \ 1]$

Palavra-código recebida: $y_i = [0 \ 1 \ 0 \ 0]$

Padrão de erro: $e_i = [0 \ 0 \ 0 \ 1]$

Note que o peso do padrão de erro é a Distância de Hamming entre $e y_i e c_i$.

Peso do padrão de erro: $e_i = 1$

• Pós-multiplicando $\underline{y_i} = \underline{c_i} + \underline{e_i}$ por \mathbf{H}^T obtemos

$$\underline{y_i}\mathbf{H}^T = (\underline{c_i} + \underline{e_i})\mathbf{H}^T = \underline{c_i}\mathbf{H}^T + \underline{e_i}\mathbf{H}^T = \underline{e_i}\mathbf{H}^T \qquad \underline{y_i}\mathbf{H}^T = \underline{e_i}\mathbf{H}^T$$

<u>Nota</u>: Lembre que $\underline{c_i}\mathbf{H}^T = \underline{\mathbf{0}}$, ou seja, as palavras-código de um código são ortogonais à sua matriz de paridade.

• Define-se o vetor n-k dimensional \underline{s} , denominado $\underline{sindrome}$ de \underline{de} ou simplesmente $\underline{sindrome}$, como

$$\underline{s_i} = \underline{e_i} \mathbf{H}^T$$

Dimensão de $\underline{e_i}=n$; dimensão de $H=(n-k)\times n$; dimensão de s_i =(n-k).

conjunto de padrões de erro $\left\{e_i\right\}$, mas ${ t n ilde{ao}}$ pelo conjunto ${ t C}$ de palavrascódigo transmitidas, como podemos inferir de $s_i = y_i \mathbf{H}^T = e_i \mathbf{H}^T$.

Observe que:

- e_i é um vetor de n bits (i.e., e_i é um vetor n dimensional em $\mathbf{GF}(2)$) \rightarrow existem 2^n possíveis padrões de erro no conjunto $\{e_i\}$;
- \underline{s} é um vetor de n-k bits \rightarrow existem 2^{n-k} possíveis síndromes no conjunto
- Em consequência, $s_i = e_i \mathbf{H}^T$ mapeia diferentes padrões de erro e_i na mesma síndrome s.

• O mapeamento do padrão de erro $\underline{e_i}$ em uma síndrome $\underline{s_i}$, através da matriz de paridade \mathbf{H}^T resulta na Tabela de Síndromes.

Padrão de Erro

Síndrome

Siliaronic	I dalao de Ello
Síndrome \underline{s}_i	Padrão de Erro <u>e</u> _i
[0 0 0]	[0 0 0 0 0]
[0 0 1]	[0 0 0 0 1]
[0 1 0]	[0 0 0 1 0]
[0 1 1]	[0 1 0 0 0]
[1 0 0]	[0 0 1 0 0]
[1 0 1]	[1 0 0 0 0]
[1 1 0]	[1 1 0 0 0]
[1 1 1]	[1 0 0 1 0]

- O processo de decodificação pode ser definido nas seguintes etapas
- 1) Cálculo da síndrome através da multiplicação da palavra-código recebida y_i pela matriz de paridade transposta \mathbf{H}^T

$$\underline{s_i} = \underline{y_i} \mathbf{H}^T$$

- 2) Identificação do erro padrão e_i associado a síndrome s_i , através de consulta a tabela de síndromes.
- 3) Cálculo da palavra-código decodificada c_{dec} através da soma da palavracódigo recebida y_i com o erro padrão $\underline{e_i}$.

$$\underline{c_{dec}} = \underline{y_i} + \underline{e_i}$$

4) Recuperação da mensagem transmitida x_{dec} . Para códigos sistemáticos, a mensagem corresponde aos primeiros bits da palavra-código. Deste modo, para obter x_{dec} basta descartar os n-k bits de paridade de c_{dec} .

- O AP também é uma tabela que possui 2^{n-k} <u>linhas</u>, cada uma delas associada a uma das 2^{n-k} possíveis **síndromes**.
- O nº de <u>colunas</u> do AP é 2^k , correspondendo ao nº de **palavras-código** do código $\theta(n,k)$.
- Quando implementado, a linha superior do AP recebe a designação L0 e a coluna mais à esquerda recebe a designação C0.
- O AP é formado de $2^{n-k} \times 2^k = 2^n$ células (i.e. 2^n possíveis padrões de erro).

Tabela 5 – Forma geral do arranjo padrão

	C0	C1	C2	 C(2 ^k -1)
L0	$\underline{e}_0 = \underline{c}_0 = \underline{0}$	<u>c</u> ₁	<u>c</u> 2	 <u>C</u> (2 ^k −1)
L1	\underline{e}_1	$\underline{c}_1 + \underline{e}_1$	$\underline{c}_2 + \underline{e}_1$	 $\underline{c}_{(2^k-1)} + \underline{e}_1$
L2	\underline{e}_2	$\underline{c}_1 + \underline{e}_2$	$\underline{c}_2 + \underline{e}_2$	 $\underline{c}_{(2^k-1)} + \underline{e}_2$
:	:	:		:
$L(2^{n-k}-1)$	$\underline{\mathcal{C}}(2^{n-k}-1)$	$\underline{c}_1 + \underline{e}_{\left(2^{n-k}-1\right)}$	$\underline{c}_2 + \underline{e}_{\left(2^{n-k}-1\right)}$	 $\underline{c}_{(2^k-1)} + \underline{e}_{(2^{n-k}-1)}$

- Na linha L0 do AP são listadas, da esquerda para a direita, as 2^k palavrascódigo de $\boldsymbol{\theta}(n,k)$, cada uma delas representada por um vetor ndimensional em GF(2).
- A palavra-código c_0 pertencente à célula identificada pela intersecção da coluna C0 com a linha L0 (célula $L0 \times C0$) obrigatoriamente deve ser aquela representada pelo vetor 0.
- Na coluna C0, abaixo da palavra-código $\underline{0}$, são listados, de alto a baixo, os $2^{n-k}-1$ padrões de erro relativos à palavra-código $\underline{c}_0=\underline{0}$.
- Primeiramente são listados todos os n padrões de erro de peso 1, isto é, todos os padrões de erro que resultam de uma Distância de Hamming unitária entre a palavra-código y recebida e $c_0 = \underline{0}$.
- Se $2^{n-k} > n$, então lista-se a seguir em C0 todos os possíveis padrões de erro de peso 2.

Em seguida lista-se em C0 todos os possíveis padrões de erro de peso 3, e assim sucessivamente até que todas as 2^{n-k} células de C0 estejam preenchidas.

Neste contexto, $\underline{e}_0 = \underline{c}_0 = 0$ representa o padrão de erro de peso 0, isto é, representa a não-ocorrência de erro.

	C0	C1	C2		$C(2^k-1)$
L0	$\underline{e}_0 = \underline{c}_0 = \underline{0}$	<u>c</u> ₁	<u>c</u> 2		$\underline{C}(2^k-1)$
L1	\underline{e}_1	$\underline{c}_1 + \underline{e}_1$	$\underline{c}_2 + \underline{e}_1$:	$\underline{c}_{(2^k-1)} + \underline{e}_1$
L2	\underline{e}_2	$\underline{c}_1 + \underline{e}_2$	$\underline{c}_2 + \underline{e}_2$:	$\underline{c}_{(2^k-1)} + \underline{e}_2$
:	:	::	::		:
L(2 ^{n-k} -1)	$\underline{\mathcal{C}}(2^{n-k}-1)$	$\underline{c}_1 + \underline{e}_{\left(2^{n-k}-1\right)}$	$\underline{c}_2 + \underline{e}_{(2^{n-k}-1)}$		$\underline{c}_{\left(2^k-1\right)} + \underline{e}_{\left(2^{n-k}-1\right)}$

Nota: Visto que cada linha do AP <u>necessita</u> corresponder a uma <u>única</u> síndrome dentre as 2^{n-k} possíveis síndromes, devemos ter o cuidado de, na construção de C0, assegurar que distintos padrões de erro de peso maior que 1 em C0 correspondam a síndromes que são distintas entre si e que são simultaneamente distintas daquelas que correspondem a padrões de erro de peso 1.

- Dando prosseguimento à construção do AP, adicionamos o padrão de erro contido na i-ésima célula de C0 à palavra-código na célula L0 × C1 e colocamos o resultado na i-ésima célula em C1.
- Em seguida, adicionamos o padrão de erro contido na i —ésima célula de C0 à palavra-código na célula $L0 \times C2$ e colocamos o resultado na i-ésima célula em C2, e assim sucessivamente até completar a última coluna $C(2^k-1)$, mais à direita do AP, sendo $i=0,1,2\cdots,2^{n=k}-1$.

	C0	C1	C2	 C(2 ^k -1)
L0	$\underline{e}_0 = \underline{c}_0 = \underline{0}$	<u>c</u> ₁	\underline{c}_2	 <u>C</u> (2 ^k −1)
L1	\underline{e}_1	$\underline{c}_1 + \underline{e}_1$	$\underline{c}_2 + \underline{e}_1$	 $\underline{C}_{(2^k-1)} + \underline{e}_1$
L2	\underline{e}_2	$\underline{c}_1 + \underline{e}_2$	$\underline{c}_2 + \underline{e}_2$	 $\underline{c}_{(2^k-1)} + \underline{e}_2$
:				:
$L(2^{n-k}-1)$	$\underline{\mathcal{C}}(2^{n-k}-1)$	$\underline{c}_1 + \underline{e}_{(2^{n-k}-1)}$	$\underline{c}_2 + \underline{e}_{\left(2^{n-k}-1\right)}$	 $\underline{c}_{(2^k-1)} + \underline{e}_{(2^{n-k}-1)}$

Exemplo 6: Seja o codificador de canal no transmissor de um sistema de comunicação digital que utiliza o código de bloco gerado por:

$$\mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- a) Determine um possível AP para este código e a Tabela de Síndromes associada, visando o projeto do decodificador no receptor.
- b) Suponha que o transmissor digital envie a palavra-código \underline{c} = [1 0 1 0 1] através do canal. O canal degrada o sinal de forma que o demodulador no receptor envia para o decodificador a palavra código y = [1 1 1 0 1] (erro no segundo bit). Verifique a capacidade do decodificador em detectar e corrigir este erro.
- c) Suponha que o ruído/interferência no canal seja alto de forma que o demodulador no receptor envia para o decodificador a palavra-código y = [1 1
- 1 1 1] (erro no segundo e quarto bits). Verifique a capacidade do decodificador em detectar e corrigir este erro duplo.

Solução:

a) A matriz geradora não necessita ser transformada por permutação de colunas ou por operações elementares em linhas visto que já encontra-se na forma sistemática, isto é,

$$\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix} \qquad \mathbf{G} = \begin{vmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{vmatrix} = \begin{bmatrix} \mathbf{I}_2 & \mathbf{P} \end{bmatrix}$$

Visto que $G_{k\times n}=G_{2\times 5}$, o código em questão é $\boldsymbol{\theta}(5,2)$.

As $2^k=2^2=4$ palavras-código de $m{ heta}(5,\!2)$ gerado por ${f G}$ são obtidas de $c_i=$

$$\underline{x_i}G$$
.

$$\underline{c}_0 = \begin{bmatrix} 0 & 0 \end{bmatrix} \mathbf{G} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\underline{c}_1 = \begin{bmatrix} 0 & 1 \end{bmatrix} \mathbf{G} = \begin{bmatrix} 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

$$\underline{c}_2 = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{G} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$\underline{c}_3 = \begin{bmatrix} 1 & 1 \end{bmatrix} \mathbf{G} = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 \end{bmatrix}$$

A partir de **G**, podemos definir **H**:

$$\mathbf{H}_{(n-k)\times n} = \begin{bmatrix} \mathbf{P}^T & \mathbf{I}_{n-k} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Para determinar os padrões de erro da coluna C0 do AP precisamos verificar quais as síndromes resultantes dos n=5 padrões de erro de peso 1 para que não ocorra igualdade com as síndromes resultantes dos padrões de erro de peso maior que 1.

Os padrões de erro de peso 1 são: [0 0 0 0 1], [0 0 0 1 0], [0 0 1 0 0], [0 1 0 0 0] e [1 0 0 0 0].

Verificando as síndromes resultantes dos padrões de erro de peso 1: [0 0 1], [0 1 0], [1 0 0], [0 1 1], [1 0 1]

Obviamente a síndrome resultante do padrão de erro de peso 0: inexistência de erro) é $\begin{bmatrix} 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$.

\underline{e}_{i}	$e_i \mathbf{H}^T = s_i$
_1	=1 ≥1
[0 0 0 0 1]	$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
[0 0 0 1 0]	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
[0 0 1 0 0]	$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
[0 1 0 0 0]	$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$
[1 0 0 0 0]	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

- O AP a ser construído possui $2^{n-k} = 2^{5-2} = 8$ linhas (correspondentes às 2^{n-k} síndromes).
- Já determinamos n+1=6 síndromes (padrões de erro de peso 0 e peso 1).
- $2^{n-k} (n+1) = 8 (5+1) =$ Ainda faltam determinar 2 síndromes.
- Estas 2 síndromes faltantes devem obrigatoriamente ser distintas entre si e distintas das n + 1 = 6 síndromes já determinadas.
- Tendo esta condição em mente, verifica-se na tabela de síndromes que as síndromes faltantes são [1 1 0] *e* [1 1 1].
- Os padrões de erro que resultam nestas 2 síndromes devem ser padrões de erro de peso 2, visto que já esgotamos os possíveis padrões de erro de peso 0 e de peso 1.

\underline{e}_i	$\underline{e}_i \mathbf{H}^T = \underline{s}_i$
[0 0 0 0 1]	$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$
[0 0 0 1 0]	$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$
[0 0 1 0 0]	$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$
[0 1 0 0 0]	$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$
[1 0 0 0 0]	$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \mathbf{H}^T = \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$

Se expressarmos o padrão de erro por $e_i = \left[b_4 \ b_3 \ b_2 \ b_1 b_0
ight]$, onde b_i representa a ordem do bit, e considerando que $s_i = e_i \mathbf{H}^T$, temos que para a síndrome $[1 \ 1 \ 0]$:

[1 0]:
$$\begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} b_4 & b_3 & b_2 & b_1 & b_0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

o que resulta no seguinte sistema de equações em $\mathbf{GF}(2)$:

$$\begin{aligned} b_4 + b_2 &= 1 \to b_4 = b_2 + 1 \to b_4 = \overline{b_2} \\ b_3 + b_1 &= 1 \to b_3 = b_1 + 1 \to b_3 = \overline{b_1} \\ b_4 + b_3 + b_0 &= 0 \to b_2 + 1 + b_1 + 1 + b_0 = 0 \to b_2 + b_1 + b_0 = 0 \end{aligned}$$

onde b representa a negação do valor lógico do bit b.

- Um possível padrão de erro de peso 2 que obedece às equações acima é $e_i = [1 \ 1 \ 0 \ 0 \ 0].$
- Portanto este será o padrão de erro que associaremos à síndrome [1 1 0].

Para a síndrome [1 1 1] temos que:

$$\begin{bmatrix} 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} b_4 & b_3 & b_2 & b_1 & b_0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{e_i}{s_i} = [b_4 \ b_3 \ b_2 \ b_1 b_0]$$
$$s_i = e_i \mathbf{H}^T$$

o que resulta no seguinte sistema de equações em $\mathbf{GF}(2)$:

$$\begin{aligned} b_4 + b_2 &= 1 \to b_4 = b_2 + 1 \to b_4 = \overline{b_2} \\ b_3 + b_1 &= 1 \to b_3 = b_1 + 1 \to b_3 = \overline{b_1} \\ b_4 + b_3 + b_0 &= 1 \to b_2 + 1 + b_1 + 1 + b_0 = 1 \to b_2 + b_1 + b_0 = 1 \end{aligned}$$

- Um possível padrão de erro de peso 2, distinto do anterior, que obedece às equações acima é $e_i = [1 \ 0 \ 0 \ 1 \ 0].$
- Portanto este será o padrão de erro que associaremos à síndrome [1 1 1].

De posse destes resultados, o AP é construído como:

	Arranjo Padrão:														
	C0	C1	C2	C3											
L0	[0 0 0 0 0]	[0 1 0 1 1]	[1 0 1 0 1]	[1 1 1 1 0]											
L1	[0 0 0 0 1]	[0 1 0 1 0]	[1 0 1 0 0]	[1 1 1 1 1]											
L2	[0 0 0 1 0]	[0 1 0 0 1]	[1 0 1 1 1]	[1 1 1 0 0]											
L3	[0 0 1 0 0]	[0 1 1 1 1]	[1 0 0 0 1]	[1 1 0 1 0]											
L4	[0 1 0 0 0]	[0 0 0 1 1]	[1 1 1 0 1]	[1 0 1 1 0]											
L5	[1 0 0 0 0]	[1 1 0 1 1]	[0 0 1 0 1]	[0 1 1 1 0]											
L6	[1 1 0 0 0]	[1 0 0 1 1]	[0 1 1 0 1]	[0 0 1 1 0]											
L7	[1 0 0 1 0]	[1 1 0 0 1]	[0 0 1 1 1]	[0 1 1 0 0]											

E a Tabela de Síndromes para implementação do decodificador é:

Tabela de Síndro	mes (implementada em ROM):
Síndrome \underline{s}_i	Padrão de Erro \underline{e}_i
[0 0 0]	[0 0 0 0 0]
[0 0 1]	[0 0 0 0 1]
[0 1 0]	[0 0 0 1 0]
[0 1 1]	[0 1 0 0 0]
[1 0 0]	[0 0 1 0 0]
[1 0 1]	[1 0 0 0 0]
[1 1 0]	[1 1 0 0 0]
[1 1 1]	[1 0 0 1 0]

b) Sabemos que
$$\underline{y_i}\mathbf{H}^T = \underline{e_i}\mathbf{H}^T = \underline{s_i}$$
.

Dado $y_i = [1 \ 1 \ 1 \ 0 \ 1]$, então

$$\underline{s_i} = \underline{y_i} \mathbf{H}^T = [0 \ 1 \ 1]$$

Consultando a Tabela de Síndromes verifica-se que o padrão de erro correspondente é e_i = [0 1 0 0 0].

Para encontrar a palavra-código decodificada c_{dec} :

$$\underline{y_i} = \underline{c_i} + \underline{e_i},$$

$$\underline{y_i} + \underline{e_i} = \underline{c_i} + \underline{e_i} + \underline{e_i} = \underline{c_{dec}}$$

$$\underline{c_{dec}} = \underline{y_i} + \underline{e_i} = \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \end{bmatrix} \rightarrow \underline{x_{dec}} = \begin{bmatrix} 1 & 0 \end{bmatrix}$$

Portanto, para este caso, o decodificador detectou e corrigiu o erro.

c) Partindo de
$$\underline{y_i}\mathbf{H}^T = \underline{e_i}\mathbf{H}^T = \underline{s_i}$$
.

Dado $y = [1 \ 1 \ 1 \ 1 \ 1]$, então

$$\underline{s_i} = \underline{y_i} \mathbf{H}^T = [0 \ 0 \ 1]$$

Consultando a Tabela de Síndromes verifica-se que o padrão de erro correspondente é $e_i = [0\ 0\ 0\ 1]$.

$$\underline{c_{dec}} = \underline{y_i} + \underline{e_i} = [1 \ 1 \ 1 \ 1 \ 0] \rightarrow \underline{x_{dec}} = [1 \ 1]$$

Portanto, para este caso, o decodificador detectou o erro mas **não** corrigiu o erro duplo.

- A impossibilidade deste código corrigir todos os padrões de erro com peso maior que 1 pode ser também verificada bastando consultar a coluna C0 do AP.
- Por inspeção da coluna C0 conclui-se que este código corrige todos os 5 padrões de erro de peso 1 possíveis e somente 2 padrões de erro de peso 2, quais sejam, e_i = [1 1 0 0 0] e e_i = [1 0 0 1 0].
- Em geral o projetista do código escolhe os padrões de erro de peso w que corrigem w erros com base em alguma peculiaridade do sistema digital.
- Por exemplo, no Exemplo 6 o número total de padrões de erro de peso 2 é dado pela combinação de n=5 bits tomados m=2 a m, isto é, Comb(n, m) = Comb(5,2) = 10, onde Comb(n, m) = n!/[m!(n - m)!].
- No entanto, na construção do AP foi possível utilizar apenas 2 deles:

$$\underline{e_i} = [1 \ 1 \ 0 \ 0 \ 0] \ e \ \underline{e_i} = [1 \ 0 \ 0 \ 1 \ 0].$$

Principais Códigos de Blocos Binários - Códigos de Hadamard

- $\theta(n,k) = \theta(2^m, m+1)$, caracterizados por $d_{\min} = m+1$, onde $m \ge 1$ 1 é um número inteiro.
- Em geral, os Códigos de Hadamard apresentam baixa razão de codificação $R_C = k/n = \tau_S/\tau_x = (m+1)/2^m$, onde τ_S representa a largura (duração no tempo) dos bits em uma palavra-código e au_x representa a largura dos bits na respectiva mensagem.
- Portanto, como $\tau_{\rm S}/\tau_{\rm x}$ é pequeno, o uso de um Código de Hadamard implica em um considerável aumento na banda-passante do sistema, e, por isso, não é muito utilizado.

Principais Códigos de Blocos Binários - Código de Golay

- $\theta(23,12)$, caracterizado por $d_{\min}=7$, o que significa:
 - uma capacidade de correção de até $t = \left\lfloor \frac{d_{min}-1}{2} \right\rfloor = \left\lfloor \frac{7-1}{2} \right\rfloor = 3$ erros simultâneos e
 - uma capacidade de detecção de até $d=d_{min}-1=7-1=6$ erros simultâneos.
- Este código é peculiar porque ele é o único código conhecido de 23 bits capaz de corrigir até 3 erros simultâneos.

Principais Códigos de Blocos Binários - Código de Hamming

- $\theta(2^m-1,2^m-1-m)$, bastante populares por serem caracterizados pela extrema facilidade de construção, aliada a uma distância mínima $d_{\min}=3$ (detecta até 2 erros simultâneos e corrige até 1 erro), sendo m=n-k um inteiro positivo. Por exemplo, se m=3, obtemos um Código de Hamming $\theta(7,4)$.
- Em geral, a construção de um código de bloco $\theta(n,k)$ consiste em:
 - definirmos a sua matriz de paridade $\mathbf{H}_{(n-k)\times n}$ e, a partir da definição de \mathbf{H} ,
 - obtermos a sua matriz geradora $\mathbf{G}_{k\times n}$.
- Lembrando que: $\mathbf{G} = \begin{bmatrix} \mathbf{I}_k & \mathbf{P} \end{bmatrix}$ e $\mathbf{H}_{(n-k)\times n} = \begin{bmatrix} \mathbf{P}^T & \mathbf{I}_{n-k} \end{bmatrix}$
- A matriz **H** de um Código de Hamming $\theta(2^m 1, 2^m 1 m)$, caracteriza-se pelas suas $n=2^m-1$ colunas serem formadas por todos os vetores distintos mdimensionais em $\mathbf{GF}(2)$, exceto o vetor 0.
- Por exemplo, um código $\theta(3,1)$ é um Código de Hamming com m=2 em que a matriz \mathbf{H} é formada $\mathbf{H}_{(n-k)\times n}=\mathbf{H}_{2\times 3}=\begin{bmatrix}0&1&1\\1&0&1\end{bmatrix}$ pelos n = 3 vetores colunas $[0 \ 1]^T$, $[1 \ 0]^T$, $[1 \ 1]^T$.

- Os Códigos Reed-Solomon constituem uma sub-classe de uma ampla classe de códigos cíclicos denominada de Códigos BCH (Bose Chaudhuri Hocquenghem).
- Os Códigos Reed-Solomon (RS) encontram-se entre os códigos com alta capacidade de correção de erro, sendo largamente utilizados em muitos sistemas digitais como:
 - Dispositivos de armazenamento (Fita Magnética, CDs, DVD, códigos de barra, etc.).
 - Comunicações Móveis e wireless (Telefonia celular, links de microondas, etc.).
 - Comunicações via Satélite.
 - Televisão Digital.

- Vimos anteriormente que um código de bloco binário $\theta(n,k)$ codifica mensagens de k <u>bits</u> em palavras-código de n <u>bits</u>, podendo corrigir até $t = \left|\frac{d_{\min}-1}{2}\right|$ <u>bits</u> errados.
- Um Código Reed-Solomon $\theta(n,k)$, representado por $\mathbf{RS}(n,k)$, codifica mensagens de k <u>símbolos</u> em palavras-código de n <u>símbolos</u>, sendo capaz de corrigir até $t = \left| \frac{n-k}{2} \right|$ símbolos errados.
- Cada **símbolo** em uma palavra-código (ou em uma mensagem) de um código RS(n,k) é um bloco de m bits.
- Daí, portanto, o poder de correção de erro de um código RS(n,k): Mesmo que **todos** os m bits de cada um dos t símbolos recebidos estejam errados, o código RS(n,k)efetua a correção não importando a localização dos símbolos na palavra-código.
- Ainda, não importando o número e a posição dos bits errados em cada símbolo, o código RS(n,k) corrigirá até t símbolos e, caso o número de símbolos errados ultrapassar t, o código RS(n, k) detectará esta situação.

- No contexto do codificador de canal de um sistema de comunicações digitais esta característica é extremamente vantajosa porque permite a correção de um surto de $m \times t$ bits sequenciais recebidos em erro (error burst correction).
- Se o número de erros ultrapassar t, então o código RS(n,k) avisa o sistema de que não foi capaz de corrigir todos os erros.

- É de especial interesse o caso em que m=8, quando cada símbolo representa 1 byte.
- Por exemplo, consideremos um código RS(20,16) com m=8.
- Suponhamos que queiramos codificar a mensagem de k=16 bytes:
- O código RS(20,16) adiciona n-k=4 bytes de paridade e codifica a mensagem acima na palavra-código em forma sistemática abaixo:

255	100	012	098	120	003	233	111	077	163	000	001	088	200	101	007
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

Observe que nenhum símbolo é maior do que 255, valor máximo decimal para 1 byte.

255	100	012	098	120	003	233	111	077	163	000	001	088	200	101	007	208	107	221	<mark>076</mark>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								$= \left \frac{n-1}{2} \right $	$\frac{ k }{ }$	20	-16	= 2	sím	bolo)s →	16 <i>k</i>	oits		

- Observe também que as operações entre polinômios são todas executadas em $GF(2^m) = GF(2^8) = GF(256)$.
- Foge ao escopo deste texto o estudo da álgebra de polinômios em $\mathbf{GF}(2^m)$ e, portanto, não nos aprofundaremos na teoria dos Códigos Reed-Solomon.

Códigos LDPC – Low-Density Parity-Check

- Os códigos *Low-Density Parity-Check* (LDPC) são uma subcategoria dos códigos de bloco lineares e foram, originalmente, introduzidos por Gallager nos anos 1960
- Códigos LDPC são códigos de bloco com matriz de paridade *H* com muitos 0s e poucos 1s.
- Códigos LDPC longos, quando decodificados com o algoritmo Soma-Produto (SPA), são capazes de atingir um desempenho muito próximo ao limite de Shannon.
- Além do notável desempenho, o processo de codificação e decodificação adotado pelos códigos LDPC é menos complexo, quando comparado à outra classe de códigos cujo desempenho aproxima-se do Limite de Shannon, os códigos Turbo.

Códigos LDPC – Low-Density Parity-Check

- Outro fator importante a ser observado é a presença de estruturas de código altamente paralelas nos códigos LDPC, as quais são extremamente adequadas para desenvolvimento em FPGA.
- A decodificação dos códigos LDPC é realizada através de um processo iterativo do tipo soft-decision.
- O algoritmo utilizado para a decodificação dos códigos LDPC é um algoritmo de passagem de mensagem, onde as mensagens são passadas entre os dois conjuntos de nodos de validação CN e os nodos de bit BN, representados através de um grafo de Tanner.

