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1. Digital Transmission and Error
Correction

Error correction technology, with which the errors that
occur during transmission are corrected, is essential when
high-quality digital video and audio are to be provided in
digital broadcasting The principle of error correction is that
the improvement in the reliability of the received
information as a result of error correction will more than
compensate for the increase in data caused by the addition
of redundant data in the coding process.

The channel capacity C (bps) for a digital transmission
channel of bandwidth B (Hz) on which errors are caused by
random noise can be given by the following equation
(Shannon's theorem)V:

S
C= B~log2(1 +NJ

= B-log, [l + S]
N,B @

where S is signal power (W), N is noise power (W), and
N, is noise power spectral density (W/Hz). Shannon's
theorem says that coding for which data can be
transmitted without errors will exist so long as the
transmission rate does not exceed this channel capacity.
Figure 1 shows the change in channel capacity as a
function of bandwidth. Here, if B were unlimited, C would
asymptotically approach the constant value C.. given
below.
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When the transmission bandwidth is limited, the
transmission rate can be increased without incurring errors
only if the transmit power is increased to improve S/N,.

Conversely, if power is limited, channel capacity can be
increased by increasing the transmission bandwidth.
However, even if the bandwidth can be extended, the error-
free transmission rate will reach a limiting value
determined by the S/Ny of the transmission channel.
Accordingly, the issue in error correction is the extent to
which the expansion of bandwidth due to coding can
efficiently raise the reliability of information and bring the
error-free transmission rate close to Shannon's channel
capacity.?

Error correcting codes can be distinguished into two types:
block code and convolutional code. A block code generates
a single codeword from a fixed-length piece of information,
called a block, whereas a convolutional code generates a
code series from multiple blocks of information.

2. Block Code

An important type of block code is "cyclic code" in which
the cyclic shifting of codeword components also produces a
codeword. One feature of cyclic code is that coding and
decoding can be achieved relatively easily using a shift
register. The following provides an explanation of block
codes, with cyclic code presumed.

2.1 Code expressions

A block code is generated by adding parity check bits for
detecting and correcting errors in information bits. A block
code featuring a code length of n bits and k bits of
information is denoted as an (n, k) code. Here, the coding
rate, which indicates the efficiency of coding, is defined as
k/n. A block code can be represented by a matrix or
polynomial, as explained below.

(1) Matrix representation
We consider the coding of a set of information (called
here just information ) i of length k bits to a codeword ¢ of
length n bits.
i= (ik—l’ik—Z’m’iO) ©)
4
The components of codeword ¢ are expressed by the
following equation.

i (0<i<k-1)

i

c= (C’H,Cnizy ...... ’CO)

G =18, . .
,-z':lhiflf (k<i<n-1)
)
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Here, h; indicates the coefficients (components of the
matrix expression) in the linear sums used for calculating
parity check bits for the information. The value of h; is O or
1. All sums here are Exclusive OR operations.

Denoting the number of parity bits as m (= n-k), the
matrix relating the codeword and information is as
follows.

010 hy~ h

(Cnfl’cn—Z’”.7C0) = (ik—l’ik—Z"“’iO) :

001 h h

‘mk (6)

This kxn matrix consisting of a kxk unit matrix and
coefficients h; is called a generator matrix. A matrix H of
order mxKk is created by permutating the components of
the generator matrix as follows.

By h, 1 00
By~ hy 0 1 0

e

H=
hml hmk 0O 0 - 1 (7)

H is called a parity check matrix.

The decoding side calculates a "syndrome" by
multiplying the received words by the transpose matrix of
H. The size of the syndrome is only m bits, the same as the
number of parity check bits. Errors can be inferred from the
pattern of this m-bit syndrome since the pattern has a one-
to-one correspondence with the error locations.

(2) Polynomial representation

If the length of a block code is long, the matrix
representation can be difficult to handle, and a
polynomial expression may be more convenient.

Letting each bit of the information and codeword be a
coefficient of a polynomial, we get the following equations.

. . k-l k-2 , ,
i(xX) =i x" i T e ix 4

)
)

Equations (8) and (9) are related as follows using a
polynomial g(x) of degree m (= n-k).

c(x) =i(x)g(x)

=i(x)(g,x" + 8, X"+ gx+gy)

c(x)=c, x""+c, x"

n

(a) encoding

(10)
g(x) is called a generator polynomial.
feed back corresponding to g(x) received
l l l l o W2 word
shift register
for getting B(x) I_E SW1
i) 5°o— c(x)
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However, simply multiplying the information
polynomial i(x) by g(x) does not preserve the information's
original form within the codeword. The following
operation is therefore necessary.

First, the product of the information polynomial i(x) and
xm can be expressed as follows, where A(x) and B(x) are the
quotient polynomial and residual polynomial,
respectively, obtained by dividing that product by g(x).
i(x)" = A(x)g(x)+ B(x) 1)

Since g(x) is of degree m, A(x) and B(x) become
polynomials of degrees k-1 or less and m-1 or less,
respectively, and can be denoted as follows.

A(x) = Akilxk—l +Ak72xk—2 +...+AIX+AO

12)
B(X) = B”lem_] + Bm72xm—2 Foeet B1X+ Bo (13)
The codeword polynomial c¢(x) becomes
o(x) = A(x)g(x)
= i(x)-x”’ + B(x)
= in_lx"—l + l'n_zxn—z 4ot l-lxmﬂ + ioxm + Bm_]xm_l
+Brrl—2x”172 +eet le + BO (14)

As shown by Eq. (14), the codeword polynomial has the
information in its original form in k bits of the higher
degree terms. This kind of code is called a "systematic
code".

The codeword polynomial has the property of being
divisible by the generator polynomial. This means that a
received word in which an error has been added to the
codeword cannot be divided evenly by the generator
polynomial. The residual polynomial obtained by dividing
the received word polynomial by the generator polynomial
becomes the syndrome polynomial s(x) as a result. The
pattern of this syndrome polynomial has a one-to-one
relationship with that of the errors and can therefore be
used to correct them.

2.2 Coding and decoding

Figure 2 shows coding and decoding configurations for a
cyclic code using shift registers.

In the coding circuit of Fig. 2(a), SW1 is initially set to
its lower position so that the k bits of information are
output in their original form. SW2 is set in the closed

feed back corresponding to g(x)

b syndorome register J
error pattern detection

| correction

received word buffer register —{— output

(b) decoding

Figure 2: Coding and decoding configurations for a cyclic code
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position to perform shifting while receiving feedback
corresponding to the generator polynomial. This
shifting determines the residual polynomial B(x)
obtained by dividing the product of i(x) and xm by g(x).
The coefficients of B(x) are left in the shift register after
the above k bits have been output. At this point in time,
SW1 is set to its upper position, SW2 is set in an open
position, and the coefficients of B(x) are output in order
from the shift register to complete the codeword.

Next, in the decoding circuit of Fig. 2(b), the received
word is simultaneously input to the buffer register and the
syndrome register. The latter register is used to calculate
the residual polynomial obtained by dividing the received
word by the generator polynomial. Once all bits of the
received word have been input, the absence of error in the
received word can be inferred if the syndrome register
contains only zeros.

In error correction, when the value of the syndrome
register corresponds to a pattern in which the leading bit of
the received word is erroneous, that bit will be corrected
and then output. The feedback bit of the syndrome register
will also be corrected at this time. This operation repeats
until all data in the received-word buffer register have been
output.

2.3 Galois field

The concept of a Galois field is important when thinking
about block codes in mathematical terms. A Galois field is
a set with a finite number of elements that can be added,
subtracted, multiplied, and divided (except by 0). A Galois
field of q elements is denoted as GF(q ).

Accordingly, a Galois field cannot have an arbitrary
(infinite) number of elements. Furthermore, the number of
elements g must be of the form pm, where p is a prime
number and m is a positive integer. A field whose number
of elements is equal to a prime number is called a prime
field and one whose number of elements is equal to a
power of a prime is called an extension field of a base
prime field. Of particular importance to error correcting
code is the prime field GF(2) for the prime number 2 and its
extension field GF(2m).

There are two elements in GF(2): 0 and 1. These elements
can be subjected to the four algebraic operations in the
same way as an integer with the provision that any result
equal to 2 or greater takes on the remainder of that result
divided by 2. This means that addition in GF(2) is an
Exclusive OR operation.

When deriving an extension field from a certain
prime field, the field is expanded by adding on the
roots of an irreducible polynomial. This is similar to
affixing root i (imaginary unit) of the irreducible
polynomial x?+1=0 to a real number when deriving a
complex number field from a real number field. For
example, in deriving GF(2%) from GF(2), the 256
elements of GF(2%) would be 0, 1,@,a?, ..., @®* where «
is a root of the irreducible polynomial x3+x*+x3+x*+1=0.

In a block code, digital data corresponds to the elements

of a Galois field, and coding and decoding are performed
by operating on those elements.

2.4 Examples of block codes

(1) Bose-Chaudhuri-Hocquenghem (BCH) code®

The BCH code is used in a variety of applications due to
its especially strong ability for correcting random errors as
well as its wide range of code lengths. The following
describes a 2-element (binary) BCH code that handles data
on GF(2).

Denoting the number of bits that can be corrected within
one block as t, then, for any positive integer m, a BCH code
with code length n of 2™-1 and parity length k of mt or less
can be generated. Now, given that one element of the
Galois field GF(2™) is @, the minimal polynomial over
GF(2) having @, a2, ..., a@? as roots becomes the generator
polynomial of the BCH code.

However, because a polynomial over GF(2) also has @' to
the second power, that is, a? as a root as well, the roots of
the generator polynomial of BCH code may be the t roots
a, a3 ..., a??of odd powers only. The generator
polynomial of BCH code is consequently defined by the
following expression:

g(x) = LCM[ml(x)’mS(‘x)’.“’mhfl(x)] (15)

where m;(x) is the minimal polynomial over GF(2)
having @' as a root and LCM[ ] indicates the least common
multiple polynomial. Table 1 shows examples of generator
polynomials for 2-element BCH code.

Table 1
n ‘ k ‘ t ‘ generator polynomials
7 4 1 xX34x+l
15 11 1 XHx+1
7 2 XX ExEHxAHL
31 26 1 x+x%+1
16 3 XXX 0O X BT+ XXX+ X+1
63 57 1 xSx+l
39 4 X24+X23+X22+X20+X19+X17+X16+Xl3+X10+X9+X8
FXEOHX XX+

(2) Reed-Solomon code ®

The Reed-Solomon (RS) code performs data coding and
decoding in units of multiple bits (byte). Consequently,
while the 2-element BCH code described in the previous
section processes data in bit units of GF(2), the extension of
this to a GF(2™) extension field is the RS code.

Given that « is one element of GF(2™), the generator
polynomial of RS code for correcting up to t bytes within a
block is defined as follows:

g(x)=(x=1)(x—a)(x—0?)(x—a®") .

where code length is 2™-1 bytes or less and parity length is
2t bytes. In contrast to a 2-element code, where polynomial
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coefficients are the elements of GF(2) and roots are the
elements of GF(2™), in the case of RS code, both polynomial
coefficients and roots are the elements of GF(2™).

Reed Solomon coding is performed in a manner similar
to that of 2-element code, that is, the parity check bytes are
taken to be the residual polynomial obtained by dividing
the product of the information polynomial and x™ by the
generator polynomial.

Decoding is performed as a 5-step process of error
correction: syndrome calculation, derivation of the error
locator polynomial and error evaluator polynomial, error
locator calculation, and error value calculation.

1) Syndrome calculation

The first step in determining the location of errors in the
received data and their values is to calculate syndromes
from the received word, where the number of syndromes is
the same as the number of parity bytes. The received word
polynomial is described as follows.
R(x)=r_x"" +r_x" "+ +nx+n 17

Substituting the root @' (i=0,1,...,2t-1) of the generator
polynomial in the received word polynomial gives us the
syndrome s; as follows.

s, = R(Oti)

(n-1)i (n=2)i

_ i
=r_a +r_,0 +etho 1

=((+(re + 1) 1 h)+ ) 1y
(18)

This can be calculated by repeated multiplication and
addition, as shown in Fig. 3.

r o

Fnas f, o _’@_ D Si

Figure 3

2) Derivation of error locator polynomial and error
evaluator polynomial

Assuming that errors in the received word have occurred
in the jj, j,,...,j bytes from high-order bytes of the received
word, we consider a polynomial o (z), whose roots are the
inverse of roots @, a?... ! and a polynomial w(z) that
includes errors e;.

o(z)= (1 - a/‘z)(l - aﬂz) (1 _ Ocﬂz)

=07 +0, 7"+ +0oz+1 (19)

0(z)=0,_7" ++0z7+0,
=2 [1(1-0"7)
i k#i

i=1

(20)

The polynomials ¢ (z) and w(z) are called the error
locator polynomial and error evaluator polynomial,
respectively.

Lecture

The syndrome polynomial S(z) is defined as follows.
S(z)=s, 2"+t 52+, @1)

S(z) is related to o (z) and w(z) in the following way.
0(2)8(z) = w(z)mod z* 22)

The error locator polynomial ¢ (z) and error evaluator
polynomial w(z) are derived in the process of determining
the greatest common divisor polynomial of S(z) and z** by
the Euclidean division algorithm.

The process of deriving ¢ (z) and w(z) by the Euclidean
division algorithm is shown in Fig. 4.

Start

v
B1(2)=0  By(2)=1
Ri(@)=2* R(2)=5(2)

'
=il
|
v
Qi(2)=Ri2(2)/Ri.(2)
Ri(2)=Ri.2(2)-Qi(2)Ri1(2)

i=i+1

Bi(2)=Bi2(2)-Qi(2)Bi=(2)

deg Ri(z)<t-1 No

l Yes

0 (2)=Bi(2)/Bi(0)
0 (2)=Ri(2)/B(0)

End

Figure 4

3) Error locator calculation

Because the error locator polynomial's roots have
degrees inverse to those of the error locations, we can
substitute a'l(izo,...,n-l) in order in the error locator
polynomial to get the following equation from which i,
that is, the error locations, can be determined by the
Chien search algorithm shown in Fig. 5.
o(a”)=0 23)

The o (2) coefficients o 4,...,0, are set in each register as
initial values. Shifting is then performed in sequence, and
the number of shifts needed for the sum total of register-
outputs to be zero indicates the error location.

4) Error value calculation

Once the error locations jy,j,,...,J, are known, we substitute
a’i in the error evaluator polynomial o (z) and obtain the
following expression.
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Figure 5

ola”)=¢]](1-a*a™)

ki (24)
This can be rewritten as follows.
D) —Ji
oo ol)
H(l - oc”‘a"’)
k#i (25)

The error values €i1,825++5
be calculated.

g; at locations jy,j,,....j, can thus

5) Error correction

Erroneous bites are corrected by adding error values
€j1,82,---+€) t0 bytes corresponding to error locations jy,jp,...,ji
of the received word.

Because data in digital broadcasts are transmitted in
units of transport stream (TS) packets in MPEG-2 systems,
coding will be performed by either (204, 188) RS coding for
every 188-byte TS packet or by (207, 187) RS coding for
every 187 bytes, excluding one synchronizing byte at the
beginning of the TS packet.

(3) Difference-set cyclic code®

In block code error correction, the existence of an error is
typically determined by calculating syndromes from
received words. However, if the block length is long and the
number of parity bits is large, the number of syndrome
patterns will be enormous, forcing an increase in the scale
of the decoding circuit. In this regard, a decoding method
that enables a decoding circuit to be configured in a
relatively simple manner is "majority logic decoding.”

Majority logic decoding calculates several syndrome
sums and examines the results of those sums to determine
whether 0 or 1 is in the majority. Error correction is
performed if there are more 1's than 0's. Such a syndrome
sum is called a "parity check sum."”

An example of majority logic decodable code is the
"difference-set cyclic code." This code is so named because it
is derived from a set of numbers called a "perfect difference

set.
A perfect difference set is a set of integers such that
D={d.d,,+»d < q(g+1)} 26)
Specifically, given a set D having J (= q +1) integers, we
can define difference A as follows.

A=d —d, i=#j @7

D is called a perfect difference set if A satisfies @ to @
below.

@ The positive values of A are all different.

@ The negative values of A are all different.

®For negative A, g(g+1)+1+ A does not equal the
absolute value of A .

The polynomial for which the powers of its terms
correspond to the integers of a perfect difference set is
expressed as follows.
Z(x)=x" + x? ++ x4 (28)

Furthermore, g(x) of the difference-set cyclic code is given
as follows:

g(x)

x" =1

" GCD[Z(x).x" 1] 29)

where n is the code length and GCD[ ] indicates the
greatest common divisor polynomial.

Given that J denotes the number of integers in a perfect
difference set, a difference-set cyclic code with good
efficiency can be derived for J=2°+1, where s is any positive
integer. The block length n is 25+2%+1 bits, parity length k
is 3%+1 bits, and the number of parity check sums is J. In
addition, the number of bits t that can be corrected within
one block is (J - 1)/2 bits. Table 2 shows the generator
polynomials and perfect difference sets of the difference-set
cyclic code.

Figure 6 shows an example of majority logic decoding in
the difference-set cyclic code.

Referring to the figure, the bits of the received word will
be corrected if there are more 1's than 0's among the three
parity check sums (A, Ay, Ag).

Table 2
generator perfect difference
S| n k|j|t polynomials sets
1 7 3 3 1 x*+x3+x3+1 0,1,3
2 21 11 5 2 xOx"+xS+x4+x%+1 0,2,7,8,11
3 73 45 9 4 xZ4+xP+xP+x+x'? 0,2,10,24,25,29,36,42,
+xB+x8+xHx2+1 45
4 273 191 17 8 xB2+xT+x"5+x"+x%" 0,18,24,46,50,67,103,
+x86+x56+x52+x48+x40 112,115,126,128,159,
+x3B+x344x24+x22+x18 166,167,186,196,201
+x104+x4+1
5 1057 813 33 16 (omitted) 0,1,3,7,15,31,54,63,
109,127,138,219,255,
277,298,338,348,439,
452,511,528,555,597,
677,697,702,754,792,
879,905,924,990,1023
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parity check sum
A? A, Af

majority logic
(if 1 is majority, then correct)
L

corrected
6“9 output

correction

Figure 6

In majority logic decoding, there is also a way to
improve error correcting performance beyond
conventional levels by devising a particular means of
decoding. This decoding method is called "variable
threshold majority logic decoding.” In ordinary majority
logic decoding, error correction is performed if the number
of 1's is greater than the threshold value T=J/2 for J parity
check sums. In variable threshold majority logic decoding,
decoding is performed recursively, starting with a threshold
value of T>J/2 and continuing until T=J/2 while decreasing
T by 1 each cycle. This decoding method improves error
correcting performance by correcting bits with a high
possibility of error first.

3. Convolutional Code

In contrast to block code, convolutional code is difficult
to handle from a mathematical point of view since it refers
to past information bits to determine the codewords. It is
nevertheless a useful error correcting code in practice and
has found a wide range of application. The following
describes convolutional coding and decoding (Viterbi
decoding algorithm) on the basis of a simple example.

3.1 Convolutional coding

We consider the simple example of convolutional code
shown in Fig. 7. Here, the coding rate is 1/2 because two
bits of output data are generated for every one bit of input
data. Specifically, two bits of code ¢, and c, are generated
from one bit of input data a; and two bits of previously
input data a, and ag left in the registers. In other words, all

C;= a;tag

C= a,tastag

Figure 7

output values are systematically determined by the value
of one input bit and the values of the two previous bits.
The number of registers in the coding circuit is called the
constraint length of the convolutional code.

Denoting each of the possible states determined by the
values of the two bits left in the coding circuit registers as A
(a,=0, a;=0), B (a,=1, a;=0), C (a,=0, az=1), and D (a,=1,
a;=1), the transitions from each of these states to a
following state due to input bit a; can be represented by
the state transition diagram shown in Fig. 8.

B
aclar 1171 10/1
00/0 01/1
01/0
(= D
00/1
11/0 10/0
Figure 8

3.2 Viterbi decoding ?

Viterbi decoding is one method of decoding
convolutional code. It corrects errors by observing the
received data series and determining the code series closest
to that data series. As an example, we consider the
information series (1 0 1 0 1 0 0) input to the coding circuit
of Fig. 7. Here, the last two bits of the information series are
dummy bits used for terminating decoding, and the code
series output from the coding circuit is (11 01 00 01 00 01
11). The received series, moreover, is assumed to be (01 00
00 01 00 01 11) in which two bits, the 1st and 4th bit, are
different as a result of errors incurred on the transmission
channel.

We explain the decoding algorithm by using the Trellis
diagram shown in Fig. 9. This diagram shows the
transitions that can be made between the states described
above. Starting from state A, we calculate the total number
of bits that differ between the code output and the received
series for each path of the Trellis diagram. This total
number of different bits is called the "Hamming distance."
In the figure, the numerical values within the circles for
each state indicate the total Hamming distance with
respect to the received series up to that point on the path.
In this process, two paths enter each state but only the one
with the smaller distance survives. This remaining path is
called the "survivor." In this example, the above operation
is performed until the paths converge to state A as a result
of the dummy bits making up the last two bits of the
information series.

Consequently, the path with the smallest total Hamming
distance (A=>B—>C—>B—>C—B—C —A) survives. The
transmitted information series can be inferredtobe (1010
1 0 0), and the result of decoding is correct despite the
occurrence of two transmission errors. Correcting errors in
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information 1 0 1 0 1 0 0
convolutional code 11 01 00 01 00 01 11
received code 01 00 00 01 00 01 11
00/0 00/0 00/0 00/0 00/0 00/0 00/0
state A D 1) (1) ) 3 ©
state B
state C
state D

Figure 9

this way, by making an efficient search for the closest code
series using a Trellis diagram, is Viterbi decoding.

The above example presented a case in which dummy
bits are added to the information series to be transmitted to
indicate termination of decoding. In general, however, a
path is selected when reaching a path of fixed length on
the decoding side without adding dummy bits. In this case,
the path length terminating decoding must be five or six
times the code constraint length.

Error correcting performance can be improved by using
the results of a multi-value judgment (soft decision) made
on the received signal as a value for selecting the surviving
path instead of the Hamming distance, which is
determined from binary data (hard decision). For example,
by dividing binary data (0, 1) into 8-level data
(011,010,001,000,100,101,110,111) represented in three
bits according to the magnitude of that received signal, the
reliability of that binary data can be applied to the
decoding process. Because Viterbi decoding selects a
survivor by quantifying the difference between each path
and the received series and comparing their totals, a soft
decision is relatively easy to apply. Viterbi decoding with a
soft decision improves characteristics by about 2 dB over
those of hard-decision decoding.

3.3 Punctured coding

The coding rate of a convolutional code can be modified
by a "punctured coding" that systematically removes data
from the code series to be transmitted. On the receive side,

L
information — cgder unctuation
(=172)| _,|R

1

rate | eraser pattern

— punctuation
— code

3/44 1 0
101
7/8 1111010
1000101
Figure 10

10%E
1072 E E
F . PSK 3
o - . no-coding -
w10%E s E
m E 3
10 E E
10
106 I I I I |
2 3 4 5 6 7 8 9 10
E, /N, (dB)
Figure 11

the removed data can be ignored and decoding can be
performed by a decoder identical to the one for the original
convolutional code. Figure 10 shows examples of data
removing patterns when creating code with coding rates of
3/4 and 7/8 from convolutional code of coding rate 1/2.

While punctured coding increases transmission
efficiency, the uncertainty in selecting the survivor
increases with the amount of removed data, and thus,
error correcting performance deteriorates. Figure 11 shows
the error correcting characteristics at coding rates of 1/2,
3/4, and 7/8 for convolutional code.

4. Concatenated Coding®

When applying error correcting code to actual digital
broadcasting systems, error correction may be applied
twice to the digital data to be transmitted in a process
called concatenated coding.

In particular, concatenated coding that combines code
over GF(p) and code over GF(p™) has been found to be
effective. We give an example of concatenated coding that
combines convolutional code over GF(2) and RS code over
GF(2%), as used in actual digital broadcasting systems and
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convolutional

transmission data —» RS encode —» interleave — encode

—>  modulation

i convolutional
received data «—— RS decode <«—— deinterleave <+—— decode <«—— demodulation
(Viterbi decode)

Figure 12

program-material transmission systems.

107 convolutional code Figure 12 shows the flow of basic concatenated coding.
N -+ (204, 188) RS code ] . ! -
- 1 The convolutional code is called the "inner code" and the
107 E RS code the "outer code." In addition, considering that the
F ﬁgﬁodﬁ,‘% error after Viterbi decoding of the inner code generally
%10-35 occurs in burst form, burst-error diffusion processing is
. ] performed by adding an interleaving function between the
104 E E inner and outer codes. In this example, byte interleaving is
r=1/2\ 3/4| /8 performed in units of 8 bits, since the outer code is RS code
1075; over GF(2%). Figure 13 shows the bit error rate (BER)
& E characteristics when using a convolutional code with
- | | ] coding rates 1/2, 3/4, and 7/8 as the inner code and
0% 3 4 5 & (204,188) RS code as the outer code.  (Dr. Shigeki Moriyamay)
E, /N, (dB)
Figure 13
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