

A-Law and mu-Law
Companding
Implementations Using
the TMS320C54x
Application Note: SPRA163A

Charles W. Brokish, MTS
 Michele Lewis, MTSA
 SC Group Technical Marketing

Digital Signal Processing Solutions
 December 1997

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any
semiconductor product or service without notice, and advises its customers to obtain the latest version of
relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable
at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques
are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of
each device is not necessarily performed, except those mandated by government requirements.

Certain application using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license,
either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual
property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used.

Copyright © 1997, Texas Instruments Incorporated

TRADEMARKS

TI is a trademark of Texas Instruments Incorporated.

Other brands and names are the property of their respective owners.

CONTACT INFORMATION

US TMS320 HOTLINE (281) 274-2320

US TMS320 FAX (281) 274-2324

US TMS320 BBS (281) 274-2323

US TMS320 email dsph@ti.com

Contents
Abstract... 7
Introduction... 8

Human Acoustics and the Telephone Network ... 8
Pulse Code Modulation and Companding... 10
µ-Law Companding... 11
A-Law Companding .. 14

Implementation Using the TMS320C54X... 18
System Requirements vs. Coding Scheme... 18
µ-law Compression ... 20
µ-law Expansion ... 22
A-law Compression... 23
A-law Expansion... 25

Summary ... 26
Appendix A. Companding Examples.. 27
Appendix B. Companding Code Listing... 31
Appendix C. References ... 36

Figures
Figure 1. Sample Speech Signal: GOAT... 9
Figure 2. µ-law Companding Curve.. 12
Figure 3. A-law Companding Curve ... 15

Tables
Table 1. µ-law Binary Encoding Table... 13
Table 2. µ-law Binary Decoding Table... 14
Table 3. A-law Binary Encoding Table .. 16
Table 4. A-law Binary Decoding Table .. 17
Table 5. Companding Algorithms Summary .. 26
Table 6. µ-law Compression: .. 27
Table 7. µ-law Expansion: (shown in order as produced by compression table)............. 28
Table 8. A-law Compression ... 29
Table 9. A-law Expansion (shown in order as produced by compression table) 30

A-Law and mu-Law Companding Implementations Using the TMS320C54x 7

A-Law and mu-Law Companding
Implementations Using the

TMS320C54x

Abstract

Presented in this application note is the implementation of A-law
and µ-law companding routines for the TMS320C54x. Theoretical
material regarding companding and speech signals is provided
first, followed by thorough explanations of the algorithms. Finally,
the code is benchmarked in terms of its speed and memory
requirements.

SPRA163

8 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Introduction

Presented in this section is a description of the components of a
speech signal and their influence upon the telephone system. The
tasks these components present to the telephone system may be
achieved through the use of pulse code modulation and
companding, also included in this discussion.

Human Acoustics and the Telephone Network

By classifying according to their mode of excitation, speech
sounds can be broken into three distinct classes of phonemes,
where a phoneme is defined as the smallest unit of speech that
distinguishes one utterance from another. The three classes of
phonemes are voiced, unvoiced, and plosives. Voiced phonemes
are considered deterministic in nature. They are produced by
forcing air through the glottis with the tension of the vocal cords
adjusted so that they vibrate in a relaxed oscillation. This
produces quasi-periodic pulses of air which excite the vocal tract.1

Examples of voiced phonemes are the vowels, fricatives /v/, and
/z/, and stop consonants /b/, /d/, and /g/. Unvoiced phonemes are
generated by forming a constriction at some point in the vocal
tract and forcing air through the constriction at a high enough
velocity to produce turbulence. As a result, unvoiced phonemes
are considered random in nature. Examples of unvoiced
phonemes are the nasal consonants /m/, and /n/, fricatives /f/, and
/s/, and stop consonants /p/, /t/, and /k/. Similar in nature to
unvoiced sounds, plosive sounds result from making a complete
closure of the vocal tract, building up pressure behind the closure,
and abruptly releasing it, such as the /ch/ phoneme.

Naturally occurring speech signals are composed of combinations
of voiced, unvoiced and plosive phonemes. For example,
contained in Figure 1 is the speech signal ‘goat’, which contains
two voiced phonemes /g/ and /oa/, followed by a partial closure of
the vocal tract, and then an unvoiced phoneme, /t/. The /g/, /oa/,
and /t/ occur approximately at samples 3400-3900, 3900-5400,
and 6300-6900, respectively.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 9

Figure 1. Sample Speech Signal: GOAT

Each phoneme class brings its own stress to the telephone
system. In general, the peak to peak amplitude of voiced
phonemes is approximately ten times that of unvoiced and plosive
phonemes, as clearly illustrated in Figure 1. As a result, the
telephone system must provide for a large range of signal
amplitudes. Although lower in amplitude, unvoiced and plosive
phonemes contain more information and thus, higher entropy then
voiced phonemes. Thus, the telephone system must provide
higher resolution for lower amplitude signals.

In addition to the tasks presented by the speech signal, the
telephone network is also subject to bandwidth restrictions with
respect to the human speech and auditory ranges. The speech
bandwidth for most adults is approximately 10 kHz. In contrast,
the maximum auditory range of humans is 20 kHz. This maximum
auditory range is usually limited to young children; instead, the
typical hearing bandwidth for most adults is 15 kHz.

Of the speech and auditory bandwidths, the telephone network
restricts transmission to a 3 kHz portion, from .3 to 3.3 kHz. This
frequency range is believed to coincide with the region of greatest
intelligible speech, retaining only the first three formant
frequencies of the sampled speech signal. This reduced
bandwidth is then surrounded by unused space from 0 to .3 kHz
and from 3.3 to 4 kHz. This unused space, known as the guard
band, provides a buffer against conversation interference.
Summing the transmission and guard bands, the telephone
network has a total bandwidth of 4 kHz.

-1200
-1000
-800
-600
-400
-200

0
200
400
600
800

3000 4000 5000 6000 7000

sample

am
pl

itu
de

/g/ /oa/ /t/

SPRA163

10 A-Law and mu-Law Companding Implementations Using the TMS320C54x

In summary, the telephone system must provide adequate quality
for small amplitude signals consisting of unvoiced phonemes.
Concurrently, the telephone system must provide for transmission
of a wide range of signal amplitudes, due to the occasional
occurrence of high energy voiced phonemes. The
accomplishment of these concurrent tasks, within a limited
bandwidth, may be achieved via Pulse Code Modulation and
companding, as discussed in the following section.

Pulse Code Modulation and Companding

At the telephone transmitter, human speech is converted to
analog signals. For digital transmission, this analog signal is
converted to a digital signal, which has a fixed precision. To
provide higher voice quality at a lower cost, the analog signals
may be converted to digital signals using Pulse Code Modulation
(PCM).

PCM is composed of three successive steps: sampling, quantizing
and coding. Sampling is the determination of a signal’s amplitude
at regular time intervals. Since the telephone network has a
bandwidth of 4 kHz, for accurate reproduction, a voice signal must
be sampled at a rate of at least 8 kHz, according to Nyquist’s
theorem. That is, the amplitude of the signal is sampled every 125
µs. Once the signal’s amplitude is obtained, it is quantized into a
discrete set of amplitude levels for representation as a digital
signal. Quantization is achieved by dividing the bandwidth of the
system into quantization intervals, also known as bins. All signal
amplitudes falling within a bin are represented by the midpoint of
that quantization interval. The quantization process introduces
quantization error into the digital signal; however, the introduced
error may be minimized by minimizing the width of the bins with
respect to the number of bits needed to uniquely identify the
quantization bins. Finally, coding of the signal is performed by
converting the midpoint of each quantization level to a codeword.

In general, speech signals are composed of relatively fewer
voiced phonemes than unvoiced phonemes. Unfortunately, the
uniform quantizer, which has equally spaced zones, provides
unneeded quality for large signals which are least likely to occur,
and pronounced truncation effects for the more frequent small
amplitude signals. As a result, uniform quantization does not
perform as well as a quantizer with wider zones at high amplitudes
and narrower zones at lower amplitudes.

Instead of employing uniform quantization, a natural non-uniform
substitute is observed in the human auditory system. It is believed
that the human auditory system is a logarithmic process in which
high amplitude sound does not require the same resolution as low
amplitude sound.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 11

Conversion to a logarithmic scale allows quantization intervals to
increase with amplitude, and it insures that low-amplitude signals
are digitized with a minimal loss of fidelity. Fewer bits per sample
are necessary to provide a specified signal-to-noise ratio (SNR)
for small signals and an adequate dynamic range for large signals.

Non-uniform quantization may be achieved by first passing the
message through a compressor, a nonlinear device which
compresses the peak amplitudes. This is followed by a uniform
quantizer, such that uniform zones at the output correspond to
non-uniform zones at the input. At the receiving end, the
compressed signal is passed through an expander, another
nonlinear device used to cancel the nonlinear effect of the
compressor. The combined process is known as companding.

In addition to reducing quantization error, companding decreases
the required bandwidth of the system. That is, systems solely
employing uniform quantization require 13-bit codewords for
equivalent performance requirements of the telephone system.
However, while increasing performance, systems using nonlinear
companding may reduce the required codeword length to 8-bits or
less.

Companding is simply a system in which information is
compressed, flowed through a channel and then expanded on the
other side. Companding may be accomplished in hardware via a
CODEC, or in software using a look-up table approach or a real-
time direct calculation. However, if hardware companding is
implemented and intermediate processing of the signal is
necessary, then reverse companding is required.

Two international companding standards that retain up to 5 bits of
precision by encoding signal data into 8 bits are µ-law and A-law.
µ-law is the accepted standard of the U.S. and Japan, while A-law
is the European accepted standard. Both international standards
are discussed further in the following sections.

µµ-Law Companding

The U.S. and Japan use µ-law companding. Limiting sample
values to 13 magnitude bits, the µ-law compression portion of this
standard is defined mathematically by the continuous equation:

F(x) = sgn(x) ln(1 + µ |x|) / ln (1 + µ) Equation (1)
-1≤ x ≤ 1

where µ is the compression parameter (µ=255 for the U.S. and
Japan), and x is the normalized integer to be compressed. A
piece-wise linear approximation to this compression equation is
illustrated in Figure 2.

SPRA163

12 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Figure 2. µ-law Companding Curve

µµ = 255

0
16
32
48
64
80
96

112
128

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

Normalized Input

C
om

pa
nd

ed

S
ig

na
l

0
0.125
0.25
0.375
0.5
0.625
0.75
0.875
1

N
or

m
al

iz
ed

O

ut
pu

t

During compression, the least significant bits of large amplitude
values are discarded. The number of insignificant bits deleted is
encoded into a special field of the compressed code format, called
the chord. Each chord of the piece-wise linear approximation is
divided into equally sized quantization intervals called steps. The
step size between adjacent codewords is doubled in each
succeeding chord. Also encoded is the sign of the original integer.
The polarity bit is set to 1 for positive integer values. Thus, an 8 bit
µ-255 codeword is composed of 1 polarity bit concatenated with a
3-bit chord concatenated with a 4-bit step.

Before chord determination, the sign of the original integer is
removed and a bias of 33 is added to the absolute value of the
integer. Due to the bias, the magnitude of the largest valid sample
is reduced to 8159 and the minimum step size is reduced to
2/8159. The added bias enables the endpoints of each chord to
become powers of two, which in turn simplifies the determination
of the chord and step. Chord determination may be reduced to
finding the most significant 1 bit of the binary representation of the
biased integer value, while the step equals the four bits following
the most significant 1.

Illustrated in Table 1 is the translation from linear to µ-law
compressed data. Of the compressed codeword, bits 4-6
represent the chord and bits 0-3 represent the step. The polarity
bit of the compressed codeword is not shown in this table.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 13

Table 1. µ-law Binary Encoding Table.

Biased Input Values Compressed Code Word

Chord Step

bit: 12 11 10 9 8 7 6 5 4 3 2 1 0 bit: 6 5 4 3 2 1 0

0 0 0 0 0 0 0 1 a b c d x 0 0 0 a b c d

0 0 0 0 0 0 1 a b c d x x 0 0 1 a b c d
0 0 0 0 0 1 a b c d x x x 0 1 0 a b c d

0 0 0 0 1 a b c d x x x x 0 1 1 a b c d
0 0 0 1 a b c d x x x x x 1 0 0 a b c d
0 0 1 a b c d x x x x x x 1 0 1 a b c d

0 1 a b c d x x x x x x x 1 1 0 a b c d
1 a b c d x x x x x x x x 1 1 1 a b c d

Finally, before transmission, the entire µ-law code is inverted. The
codeword is inverted since low amplitude signals tend to be more
numerous than large amplitude signals. Consequently, inverting
the bits increases the density of positive pulses on the
transmission line, which improves the hardware performance.

µ-law expansion is defined by the continuous inverse equation:

F-1(y) = sgn(y) (1 / µ) [(1+ µ)|y| - 1] Equation(2)
-1 ≤ y ≤ 1

Before expansion, the µ-law code is inverted again to restore the
original code. During expansion, the discarded least significant
bits are approximated by the median of the interval, to reduce the
loss in accuracy. That is, if six of the least significant bits of the
original binary integer were discarded during compression, these
six least significant bits will be approximated by 1000002 during
expansion. The µ-law binary decoding table used for expansion is
given in Table 2. Again, the polarity bit is not shown in this table.
After decoding the µ-law code, the bias is removed and the sign of
the binary integer is restored according to the polarity bit.

SPRA163

14 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Table 2. µ-law Binary Decoding Table

Compressed Code Word Biased Output Values

Chord Step

bit: 6 5 4 3 2 1 0 bit: 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 a b c d 0 0 0 0 0 0 0 1 a b c d 1

0 0 1 a b c d 0 0 0 0 0 0 1 a b c d 1 0
0 1 0 a b c d 0 0 0 0 0 1 a b c d 1 0 0

0 1 1 a b c d 0 0 0 0 1 a b c d 1 0 0 0
1 0 0 a b c d 0 0 0 1 a b c d 1 0 0 0 0
1 0 1 a b c d 0 0 1 a b c d 1 0 0 0 0 0

1 1 0 a b c d 0 1 a b c d 1 0 0 0 0 0 0
1 1 1 a b c d 1 a b c d 1 0 0 0 0 0 0 0

The dynamic range of a compander may be defined as the
difference in signal power between the lowest amplitude
occupying the entire range of the first chord and the highest
occurring amplitude.2 Using this definition, the dynamic range of µ-
law companding is calculated by Equation 3:

DR = 20 log10 (8159/31) = 48.4 dB Equation(3)

where 8159 is the largest amplitude possible, and 31 is the lowest
amplitude spanning the first chord.

To further clarify the µ-law companding process, several sample
conversions from integer values, represented in sign-magnitude
form, to µ-law codewords, and vice versa, are given in Appendix
A.

A-Law Companding

A-law is the CCITT recommended companding standard used
across Europe. Limiting sample values to 12 magnitude bits, the
compression portion of this standard is defined in the continuous
Equation 4:

Equation (4)

F(x) = sgn(x) A |x| / (1 + lnA) 0 ≤ |x| < 1/A
= sgn(x) (1+ln A|x|) /(1 + lnA) 1/A ≤ |x| ≤ 1

where A is the compression parameter (A=87.6 in Europe), and x
is the normalized integer to be compressed. A piece-wise linear
approximation to this compression equation is illustrated in Figure
3.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 15

Figure 3. A-law Companding Curve

Α Α = = 8787..66

0
16
32
48
64
80
96

112
128

0 1/8 1/4 3/8 1/2 5/8 3/4 7/8 1

Normalized Input

C
om

pa
nd

ed

S
ig

na
l

0
0.125
0.25
0.375
0.5
0.625
0.75
0.875
1

N
or

m
al

iz
ed

O

ut
pu

t

A-law companding has the same basic features and
implementation advantages as µ-law companding. A-law
companding is approximated by linear segments, with the first
chord defined to be exactly linear. A zero-level output for the first
quantization interval is not defined. Although biasing of the integer
is not required before conversion, the maximum integer value is
reduced to 4096. Due to the larger minimum step size of 2/4096,
which yields higher quantization error, A-law companding
produces small amplitude signals of lower quality than µ-law
companding. However, the dynamic range of A-law companding is
slightly higher than µ-law, as shown by Equation 5:

DR = 20 log10 (4096/15) = 48.7 dB Equation (5)
where 15 is the lowest amplitude spanning the first chord.

The two companding standards may also be compared with
respect to precision of their binary integer representations. As
stated previously, retained during companding are up to 5 bits of
precision: the 4-bit step, and the leading 1 (with the exception of
values within chord 0). Thus, for µ-law companding, up to 8 bits of
precision are lost, while a maximum of 7 bits of precision are lost
for A-law companding.

Upon initial consideration, two procedures may be necessary for
A-law chord determination, due to the linear definition of the first
chord. For binary integers of magnitude greater than 1F16, the
procedure employed in chord and step determination for µ -law
compression may be implemented. For binary integers of
magnitude less than or equal to 1F16, the chord is equal to 000
and the step is equal to the resulting 4 least significant bits after
dividing the integer magnitude by 2.

SPRA163

16 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Illustrated in Table 3 is the translation from linear to A-law
compressed data. Of the compressed codeword, bits 4-6
represent the chord and bits 0-3 represent the step. Only the
magnitudes of the input values and compressed codewords are
shown; the sign extension of the input value and the polarity bit of
the compressed codeword have been omitted.

Once the chord and step have been determined, the polarity of the
original integer is determined. That is, if the original integer value
is negative, the polarity bit 7 is set to 1; otherwise, the polarity bit 7
is cleared to 0.

Table 3. A-law Binary Encoding Table

Input Values Compressed Code Word

Chord Step

bit: 11 10 9 8 7 6 5 4 3 2 1 0 bit: 6 5 4 3 2 1 0

0 0 0 0 0 0 0 a b c d x 0 0 0 a b c d

0 0 0 0 0 0 1 a b c d x 0 0 1 a b c d
0 0 0 0 0 1 a b c d x x 0 1 0 a b c d
0 0 0 0 1 a b c d x x x 0 1 1 a b c d

0 0 0 1 a b c d x x x x 1 0 0 a b c d
0 0 1 a b c d x x x x x 1 0 1 a b c d

0 1 a b c d x x x x x x 1 1 0 a b c d
1 a b c d x x x x x x x 1 1 1 a b c d

Again, to improve hardware performance, an inversion pattern is
applied to the codeword before transmission. For A-law
companding, the pattern is every other bit starting with bit 0,
where bit 0 is the rightmost bit as illustrated in Table 3.

A-law expansion is defined by the continuous inverse equation:

Equation (6)

F-1(y) = sgn(y) |y| [1+ ln(A] / A, 0 ≤|y|≤ 1/(1+ln(A))
= sgn(y) e(|y|[1+ln(A)] - 1) / [A+ A ln(A)], 1/(1+ln(A)) ≤ |y| ≤ 1

Before expansion, the inversion pattern is reapplied to the A-law
code to restore the original code. As in µ-law expansion, the least
significant bits discarded during compression are approximated by
the median of the interval, to reduce loss in accuracy. The A-law
binary decoding table used for expansion is given in Table 4. The
polarity bit is not shown in this table. After decoding the A-law
code, the sign of the integer is restored according to the polarity
bit.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 17

Table 4. A-law Binary Decoding Table

Compressed Code Word Biased Output Values

Chord Step

bit: 6 5 4 3 2 1 0 bit: 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 a b c d 0 0 0 0 0 0 0 a b c d 1
0 0 1 a b c d 0 0 0 0 0 0 1 a b c d 1
0 1 0 a b c d 0 0 0 0 0 1 a b c d 1 0

0 1 1 a b c d 0 0 0 0 1 a b c d 1 0 0
1 0 0 a b c d 0 0 0 1 a b c d 1 0 0 0

1 0 1 a b c d 0 0 1 a b c d 1 0 0 0 0
1 1 0 a b c d 0 1 a b c d 1 0 0 0 0 0

1 1 1 a b c d 1 a b c d 1 0 0 0 0 0 0

To further clarify the A-law companding process, several sample
conversions from integer values to A-law codewords and from A-
law codewords back to integer values are given in Appendix A.

SPRA163

18 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Implementation Using the TMS320C54X

The TMS320C54x implementations make use of the EXP and
NORM instructions. These instructions allow the extraction of the
most significant bits without requiring a look-up table, thus saving
memory. The EXP instruction computes the exponent value,
which is in the range of -8 to +31, and stores the result in the T
register. This is based on the most significant bit in the
accumulator. The exponent is determined by subtracting 8 from
the number of leading bits in the 40-bit source accumulator (with
the exception of the sign bit).

The NORM instruction performs a single-cycle normalization of
the accumulator, based on the 6 least significant bits of the T
register, interpreted as a 2’s complement number. Since the
shifter is loaded with the contents of the T register during the read
phase, there must be at least 1 cycle between the EXP and
NORM instructions, for proper normalization and avoidance of a
pipeline conflict.

Further discussion of system requirements with respect to coding
schemes and the TSM320C54x is presented in the following
section. Also presented are the actual coding schemes
implemented for µ-law and A-law companding.

System Requirements vs. Coding Scheme

The major issues involved in coding companding routines are
program overhead, required memory, and speed. The effect of
program overhead, consisting of context saving and restoring,
depends upon how the routines are invoked, and which registers
are accessed by the other procedures involved in the system. If
the initialized registers are not used by the other system
procedures, initialization is performed only once; otherwise, the
registers involved must be saved before and restored after
execution of the companding routine. Included in the required
memory is the program code, any initialization code resulting in
program overhead, and any necessary data variables. The goal is
to obtain routines with minimum overhead and minimum required
memory that execute at maximum speed.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 19

Companding may be performed using a look-up table method, or
by direct implementation. Each approach has its advantages and
disadvantages with respect to the previously mentioned issues.
The look-up table method requires minimum timing (3 cycles), but
it is memory intensive. To perform compression and expansion, in
addition to the program memory, two 256-word tables are
necessary. Coding consists of loading the starting table address
into a register, adding the data sample as an offset into the table,
and retrieving the codeword or data at the offset address. In
addition, significant overhead is required for building the tables in
memory. However, this overhead is reduced for those
TMS320C54x devices with on-chip ROM containing the expansion
tables (‘C542).

Companding by direct implementation may be facilitated using
mathematical equations, often called direct encoding, or by
invoking simplified algorithms. Either method of direct
implementation limits the required memory to that of the coded
program, while program overhead is reduced to register
initializations. However, most often, memory and overhead
reductions are achieved at the expense of increased cycle times.

The choice of companding approaches ultimately depends upon
the system’s performance requirements. The method selected for
this application note is the direct implementation approach using a
simplified algorithm. As will be shown, an attempt is made to
minimize the tradeoff between required memory and cycle time,
that is, companding by direct implementation is achieved using 16
to 21 words requiring only 10 to 13 cycles.

Reduced overhead or increased performance may be achieved by
combining the companding routines with other necessary
functions of the overall system. As a result, the described routines
only contain the necessary code for conversion; polling of the
samples is not performed.

When implementing the described companding routines, the
following assumptions and suggestions should be considered. It is
assumed that the incoming samples are scaled appropriately,
prior to execution, and the sign extension mode is selected. For
optimum performance, suggested is the use of the memory-
mapped ports for the incoming samples. In addition, the program
and data words should be placed in single-cycle memory.

The following sections contain detailed discussions of each
routine; the TMS320C54x assembly source code files are located
in Appendix B.

SPRA163

20 A-Law and mu-Law Companding Implementations Using the TMS320C54x

µµ-law Compression

µ-law compression may be defined by Equation 7.

µ-code = µsgn + µchd + µstep Equation (7)

As stated earlier, the sample values are limited to 13 magnitude
bits, and sign extension mode is selected. When an integer
sample is loaded into the A accumulator, the sign bit is extended
through the upper accumulator and guard bits. Letting AH
represent bits 16-31 of the upper A accumulator, the sign of the
sample may be positioned into bit 7 of the µ-code by the following
equation:

µsgn = (AH * -1) << 7 = (AH * -1) * 128 Equation (8)
= AH * (-1 * 128) = AH * (-1 << 7)

Substituting the 2’s complement of -1 and simplifying, Equation 8
becomes:

µsgn = AH * (FFFF16 << 7) = AH * FF8016 Equation (9)

The chord is determined after performing the EXP instruction on
the magnitude of the biased sample integer. Since the biased
sample values allow magnitudes up to 13-bits, excluding the sign
bit, the EXP instruction will return values in the range of 18-25,
corresponding to the largest and smallest values, respectively. By
subtracting the result of the EXP instruction from the maximum
possible, 25, the correct chord value is obtained. The chord value
is then positioned into bits 4-6, by left shifting it by 4 (or multiplying
by 16). Letting T|EXP represent the contents of the T register after
the execution of the EXP instruction, the µchd equation becomes:

Equation (10)
µchd = (1916 - T|EXP)<<4 = 19016 - (T|EXP)*16

= 18016 - (T|EXP)*16 + 1016

As stated earlier, the four bits following the most significant 1
become the step value. The step is determined after normalizing
the biased integer by the contents of the T register after the
execution of the EXP instruction. After executing the NORM
instruction, the step plus the leading 1 are located in bits 27-31 of
the source accumulator. The biased step is then positioned into
bits 0-4, by right shifting the source accumulator by 26. For true
step calculation, the leading 1 located in bit 4 is removed, as seen
in Equation 11:

Equation (11)

µstep = ([(|int| + 33) << T|EXP] >> 26) - 1016

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 21

Finally, µ-code of Equation 7 is obtained by combining Equations
9, 10 and 11:

Equation (12)

µ−code = AH * FF8016+ 19016 - (T|EXP)*16
+ ([(|int| + 33) << T|EXP] >> 26) - 1016

Evident from Equation 12 is that the removal of the leading 1 in
the µstep calculation is unnecessary if a biased µchd* equation is
implemented. Thus the implemented µchd* and µstep* equations
become:

µchd* = 18016 - (T|EXP)*16 Equation (13)
and

µstep* = ([(|int| + 33) << T|EXP] >> 26) Equation (14)

Another simplification implemented in this algorithm involves the
inversion of the 8-bit µ−code for transmission. Inversion of an 8-bit
µ−code is equivalent to:

Equation (15)

µ-code' = FF16 - µ-code = FF16 - µsgn - µchd - µstep

Substituting Equations 9, 10 and 11, Equation 7 becomes:

Equation (16)

µ-code' = FF16 - AH * FF8016 - 18016 + (T|EXP)*16
- ([(|int|+ 33) << T|EXP] >> 26)

The final result of the µ−law compression algorithm is stored in the
lower 7 bits of the B accumulator.

The µ−law compression algorithm requires 17 words of memory: 4
words of data, 10 words of program and 3 words for program
overhead. The overhead of this algorithm consists of loading the
data page pointer with the page containing the data words and
linking the AR0 pointer to the input sample. Assuming optimum
conditions, the program contains 10 single-cycle instructions. For
a 50 MIPS device, this results in a 200 Nsec execution time.
Assuming an 8 kHz sampling rate, this algorithm requires only .08
MIPS.

SPRA163

22 A-Law and mu-Law Companding Implementations Using the TMS320C54x

µµ-law Expansion

The µ−law expansion algorithm implements the following
equation:

Equation (17)

INTNUM = [(2 * µ−step + 33) * 2µ−chd - 33] * sgn(µ−sgn)
 = [(2 * µ−step + 33) << µ−chd - 33] * sgn(µ−sgn)

Since the µ−law code is inverted for transmission, what is received
is µ−code’. Inversion of the 8-bit µ−code’, extended to 15 bits, is
equivalent to Equation 18.

The 15-bit extension is used for easy µ−sgn removal. After the
µ−sgn is removed, the chord is saved to the T register, the step is
isolated, and the magnitude of INTNUM is determined. Again, for
proper normalization, there must be at least one cycle between
the loading of the chord into the T register and the normalization
of the step.

The sign of the integer is restored using the BIT, XC, and NEG
instructions. In this algorithm, the XC instruction allows for the
conditional execution of the NEG instruction based upon the
results of the BIT instruction. The BIT instruction copies the
polarity bit of µ-code into the TC bit of status register ST0. Thus, if
the TC bit is 0 (NTC), then the integer represented by µ-code is
negative, and the XC instruction allows the NEG instruction to be
performed. Since conditions tested by the XC instruction are
sampled two cycles prior to its invocation, to avoid pipeline
conflict, the BIT instruction must be performed at least 2 cycles
prior to the XC instruction. After sign restoration, the expanded
integer is stored in the high B accumulator B[31:16].

The µ−law expansion algorithm requires 21 words of memory: 3
words of data, 10 words of program, and 8 words for program
overhead. As in the previous algorithm, the overhead consists of
loading the data page pointer with the page containing the
dataword BIAS and linking the AR0 pointer to the input sample.
Additional overhead required is the loading of ASM with the
required offset, and the loading of AR2 and AR3 with the
addresses of the MASK data and the T register, respectively. This
additional overhead is required for implementation of the dual
data-memory operand versions of the SUB and ST||LD
instructions. Assuming optimum conditions, the program contains
10 single-cycle instructions. For a 50 MIPS device, this results in a
200 Nsec execution time. Assuming an 8 kHz sampling rate, this
algorithm requires only .08 MIPS.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 23

A-law Compression

A-law compression may be described by the following equation:

acode = asgn + achd + astep. Equation(19)

A-law compression requires the concurrent determination of chord
and step. After loading the integer into the B accumulator, the 6
least significant bits are removed; the result is placed in the A
accumulator. This removal facilitates a simplified routine for chord
determination. Next, the EXP instruction is applied to the A
accumulator, after which the T register will contain a value
between 25 and 31. NOTE, however, that if the value in the
accumulator is zero, the EXP yields NO redundant sign bits. This
results in a value of 0 in the T register. The accumulator is
checked for a value of 0, in which case 1Fh (31) is written to the T
register. The T register value is subtracted from the maximum
possible, 31, yielding chord values in the range of 0 to 6.
However, the correct chord range is 0-7 and may be obtained by
adding the leading 1 prior to the 4 step bits, if present, to this
result.

In determining the step, the sign of the original integer is removed
and stored to bit 7 of the A accumulator. The magnitude of the
integer is normalized by the updated contents of the T register,
after which, the step is contained in bits 32-35, and the leading 1,
if present, is contained in bit 36, of the B accumulator. For true
step determination, bits 32-35 are isolated and the chord
calculation is completed by adding bit 36 of the B accumulator to
the previous chord result.

Letting T|EXP represent the contents of T after the EXP execution,
and B36|NORM represent bit 36 of the B accumulator after the
NORM execution, the chord, step and sign calculations are
described by Equations 20, 21 and 22 respectively:

Equation (20)
achd = (1F16 - T|EXP + B36|NORM)<<4

= 1F016 - (T|EXP)*16 + (B36|NORM)<<4

Equation (21)
astep = (|int| << T|EXP) - (B36|NORM << 4)

Equation (22)
asgn = (int>>6) & 8016

Substituting Equations 20, 21 and 22 into Equation 19, A-law
compression is reduced to Equation 23:

Equation (23)
acode = (int>>6)&8016 + 1F016 - (T|EXP)*16 + |int|<< T|EXP

SPRA163

24 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Finally, the even bits of the A-law codeword are inverted before
transmission:

Equation (24)
acode* = acode XOR 5516

and the compressed codeword is located in the lower 8 bits of
accumulator A.

The A−law compression algorithm requires 20 words of memory: 5
words of data, 12 words of program and 3 words for program
overhead. The overhead consists of loading the data page pointer
with the page containing the dataword MASK, and linking the AR0
pointer to the input sample. Assuming optimum conditions, the
program contains 12 single-cycle instructions. For a 50 MIPS
device, this results in a 240 Nsec execution time, and assuming
an 8 kHz sampling rate, this algorithm requires only .096 MIPS.

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 25

A-law Expansion

A-law expansion is defined by Equation 25:

Equation (25)

INTNUM = [(2*astep + 33)*2achd - 32*δ(achd)] *sgn(asgn)
= [(2*astep + 33)<<achd - 32*δ(achd)]*sgn(asgn)

Where:

Equation (26)

δ(achd) = 1 achd = 0
 = 0 achd ≠ 0

The techniques used in the implementation of Equation 25 are
similar to those discussed in the previous algorithms. Therefore,
specific details of the A-law expansion routine are limited to the
coding comments found in Appendix B.

The A-law expansion algorithm requires 21 words of memory: 5
words of data, 13 words of program, and 3 words for program
overhead. The additional 3 words of program are due to the
required special handling of the first chord (chord 0). The
overhead consists of loading the data page pointer with the page
containing the data word MASK1, and linking the AR0 pointer to
the input sample. Assuming optimum conditions, the program
contains 13 single-cycle instructions. For a 50 MIPS device, this
results in a 260 Nsec execution time, and assuming an 8 kHz
sampling rate, this algorithm requires .104 MIPS.

SPRA163

26 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Summary

Presented in this application note were companding routines
written for the TMS320C54x digital signal processor. Theoretical
material regarding companding, as well as detailed discussions of
each algorithm, were included.

When strictly dedicated to µ-law companding, the TMS320C54x
can compress or expand 5 million words per second, assuming
the samples for conversion are available in memory. For A-law
companding, compression at 4.16 million words per second is
possible, but expansion is reduced to 3.84 million words per
second. Possibly of greatest importance is the simultaneous
decrease in MIPS and memory requirements achieved by these
algorithms, as discussed previously and summarized in Table 5.

Table 5. Companding Algorithms Summary

Memory Requirements

Total Data Program Overhead MIPS

µ-law compression 17 4 10 3 .080

µ-law expansion 21 3 10 8 .080

A-law compression 20 5 12 3 .096

A-law expansion 21 5 13 3 .104

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 27

Appendix A. Companding Examples

Table 6. µ-law Compression:

Integer Biased Integer µµ-code µµ-code’

−246010 = F66416

= −99C16

→ −(99C16+2116) = −9BD16

= (1)0 1001 1011 11012

→ (1)110 00112

=E316

→ 1C16

−150510 = FA1F16

= −5E116

→ −(5E116+ 2116) = −60216

= (1)0 0110 0000 00102

→ (1)101 10002

=D816

→ 2716

−65010 = FD7616

= −28A16

→ −(28A16 +2116) = −2AB16

= (1)0 0010 1010 10112

→ (1)100 01012

=C516

→ 3A16

−33810 = FEAE16

= −15216

→ −(15216 +2116) = −17316

= (1)0 0001 0111 00112

→ (1)011 01112

=B716

→ 4816

−9010 = FFA616

= −5A16

→ −(5A16+2116) = −7B16

= (1)0 0000 0111 10112

→ (1)001 11102

=9E16

→ 6116

−110 = FFFF16

= −116

→ −(116 +2116) = −2216

= (1)0 0000 0010 00102

→ (1)000 00012

=8116

→ 7E16

+10210 = 006616

= +6616

→ +(6616+2116) = +8716

= (0)0 0000 1000 01112

→ (0)010 00002

=2016

→ DF16

+16910 = 00A916

= +A916

→ +(A916+2116) = +CA16

= (0)0 0000 1100 10102

→ (0)010 10012

=2916

→ D616

+42010 = 01A416

= +1A416

→ +(1A416+2116) = +1C516

= (0)0 0001 1100 01012

→ (0)011 11002

=3C16

→ C316

+49910 = 01F316

= +1F316

→ +(1F316+2116) = +21416

= (0)0 0010 0001 01002

→ (0)100 00002

=4016

→ BF16

+98010 = 03D416

= +3D416

→ +(3D416+2116) = +3F516

= (0)0 0011 1111 01012

→ (0)100 11112

=4F16

→ B016

+700010 = 1B5816

= +1B5816

→ +(1B5816+2116) = +1B7916

= (0)1 1011 0111 10012

→ (0)111 10112

=7B16

→ 8416

SPRA163

28 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Table 7. µ-law Expansion: (shown in order as produced by compression table)

µµ-code’ µµ-code Biased Integer Expanded Integer

1C16 → E316 =

(1) 110 00112

→ (1) 0 1001 1100 00002

= −9C016

→ −(9C016 − 2116) = −99F16

= F66116

= −246310

2716 → D816 =

 (1) 101 10002

→ (1) 0 0110 0010 00002

= −62016

→ −(62016 − 2116) = −5FF16

= FA0116

= −153510

3A16 → C516 =
 (1) 100 01012

→ (1) 0 0010 1011 00002

= −2B016

→ −(2B016 − 2116) = −28F16

= FD7116

= −65510

4816 → B716 =
 (1) 011 01112

→ (1) 0 0001 0111 10002

= −17816

→ −(17816 − 2116) = −15716

= FEA916

= −34310

6116 → 9E16 =
 (1) 001 11102

→ (1) 0 0000 0111 10102

= −7A16

→ −(7A16 − 2116) = −5916

= FFA716

= −8910

7E16 → 8116 =
 (1) 000 00012

→ (1) 0 0000 0010 00112

= −2316

→ −(2316 − 2116) = −216

= FFFE16

= −210

DF16 → 2016 =
 (0) 010 00002

→ (0) 0 0000 1000 01002

= +8416

→ +(8416 −2116) = +6316

= 006316

= +9910

D616 → 2916 =
 (0) 010 10012

→ (0) 0 0000 1100 11002

= +CC16

→ +(CC16 − 2116) = +AB16

= 00AB16

= +17110

C316 → 3C16 =
 (0) 011 11002

→ (0) 0 0001 1100 10002

= +1C816

→ +(1C816 − 2116) = +1A716

= 01A716

= +42310

BF16 → 4016 =
 (0) 100 00002

→ (0) 0 0010 0001 00002

= +21016

→ +(21016 − 2116) = +1EF16

= 01EF16

= +49510

B016 → 4F16 =
 (0) 100 11112

→ (0) 0 0011 1111 00002

= +3F016

→ +(3F016 − 2116) = +3CF16

= 03CF16

= +97510

8416 → 7B16 =
 (0) 111 10112

→ (0) 1 1011 1000 00002

= +1B8016

→ +(1B8016−2116) = +1B5F16

= 1B5F16

= +700710

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 29

Table 8. A-law Compression

Integer A-code A-code*

−246010 = F66416

= −99C16

→ (1) 1001 1001 11002 → (1) 111 00112 = F316 → A616

−150510 = FA1F16

= −5E116

→ (1) 0101 1110 00012 → (1) 110 01112 = E716 → B216

−65010 = FD7616

= −28A16

→ (1) 0010 1000 10102 → (1) 101 01002 = D416 → 8116

−33810 =FEAE16

= −15216

→ (1) 0001 0101 00102 → (1) 100 01012 = C516 → 9016

−9010 = FFA616

= −5A16

→ (1) 0000 0101 10102 → (1) 010 01102 = A616 → F316

−110 = FFFF16

= −116

→ (1) 0000 0000 00012 → (1) 000 00002 = 8016 → D516

+4010 = 002816

= +2816

→ (0) 0000 0010 10002 → (0) 001 01002 = 1416 → 4116

+10210 = 006616

= +6616

→ (0) 0000 0110 01102 → (0) 010 10012 = 2916 → 7C16

+169 = 00A916

= +A916

→ (0) 0000 1010 10012 → (0) 011 01012 = 3516 → 6016

+42010 = 01A416

= +1A416

→ (0) 0001 1010 01002 → (0) 100 10102 = 4A16 → 1F16

+49910 = 01F316

= +1F316

→ (0) 0001 1111 00112 → (0) 100 11112 = 4F16 → 1A16

+98010 = 03D416

= +3D416

→ (0) 0011 1101 01002 → (0) 101 11102 = 5E16 → 0B16

SPRA163

30 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Table 9. A-law Expansion (shown in order as produced by compression table)

A-code* A-code Expanded Integer

A616 → F316 = (1) 111 00112 → (1) 1001 1100 00002 → −9C016

= F64016

= −249610

B216 → E716 = (1) 110 01112 → (1) 0101 1110 00002 → −5E016

= FA2016

= −150410

8116 → D416 = (1) 101 01002 → (1) 0010 1001 00002 → −29016

= FD7016

= −65610

9016 → C516 = (1) 100 01012 → (1) 0001 0101 10002 → −15816

= FEA816

= −34410

F316 → A616 = (1) 010 01102 → (1) 0000 0101 10102 → −5A16

= FFA616

= −9010

D516 → 8016 = (1) 000 00002 → (1) 0000 0000 00012 → −116

= FFFF16

= −110

4116 → 1416 = (0) 001 01002 → (0) 0000 0010 10012 → +2916

= 002916

= +4110

7C16 → 2916 = (0) 010 10012 → (0) 0000 0110 01102 → +6616

= 006616

= +10210

6016 → 3516 = (0) 011 01012 → (0) 0000 1010 11002 → +AC16

= 00AC16

= +17210

1F16 → 4A16 = (0) 100 10102 → (0) 0001 1010 10002 → +1A816

= 01A816

= +42410

1A16 → 4F16 = (0) 100 11112 → (0) 0001 1111 10002 → +1F816

= 01F816

= +50410

0B16 → 5E16 = (0) 101 11102 → (0) 0011 1101 00002 → +3D016

= 03D016

= +97610

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 31

Appendix B. Companding Code Listing

µ-law Compression: int2mu.asm
; INT2MU.ASM
;
; Integer originally loaded into A Accumulator
; (Q13 number is assumed to be sign-extended to 16 bits)
;
; mucode = musign + muchord + mustep
;
; muchord = (19h - T|EXP)<<4
; = 190h - (T|EXP)*16
; = 180h - (T|EXP)*16 + 10h
;
; musign = (AH * (-1)) <<7
; = (AH * FFFFh) * 128 = AH * (FFFFh * 128)
; = AH * (FFFFh << 7) = AH * FF80h
;
; mustep = (((|int| + 33) << (T|EXP)) << -26) - 10h
;
; Inversion of 8-bit mu code is equivalent to:
;
; mucode' = FF - mucode = FF - musign - muchord - mustep
;
; mucode' = FF-180h-AH*FF80h+(T|EXP)*16-((|int|+33)<<(T|EXP))>>26
;
; Final output is stored in Low accumulator B(7:0)

 .def START
 .mmregs

 .data
BIAS1 .word 0FFh-180h
BIAS2 .word 0FF80h
BIAS3 .word 21h
BIAS4 .word 16

TABLE .word -2460,-1505,-650,-338,-90,-1,102,169,420,499,980,7000
;TEST VALUES

 .text
START STM #TABLE, AR0
 LD #BIAS1, DP

cbeg LD *AR0+, A ;LOAD INTEGER FOR CONVERSION
 LD BIAS1, B ;LOAD (FFh-180h)
 MASA BIAS2, B ;Acc B = (FFh-180h-AH*FF80h)
 ABS A ;A = |int|
 ADD BIAS3, A ;A = |int| + 33 (33 = 21H)
 EXP A ;# OF LEADING ZEROS -> (T|EXP)
 MAC BIAS4, B ;ACCB += (T|EXP)*16

SPRA163

32 A-Law and mu-Law Companding Implementations Using the TMS320C54x

 NORM A ;A<<(T|EXP)
 SFTA A,-16 ;(A<<(T|EXP))>>16
 SUB A,-10, B ;mucode' = B - (A<<(T|EXP))>>26
 B cbeg ;DO IT AGAIN!!

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 33

µ-law Expansion: mu2int.asm
; MU2INT.ASM
;
;IMPLEMENT EQUATION
;
; mucode = musign : muchord : mustep
; X XXX XXXX
;
; INTNUM = [((2 * mustep + 33) << muchord) - 33] * SGN(musign)
;
; NOTE: since mucode is inverted for xmission, received is
; mucode' = musign' : muchord' : mustep'
;
; Inversion of 8-bit mucode, extended to 15 bits is equivalent to
;
; mucode = 7FFFh - mucode'
;
; The 15 bit extension is used for easy musign removal
;
;The final output is stored in high accumulator B(31:16)

 .def START
 .mmregs
 .data
BIAS .word 21h
MASK .word 7FFFh,1Fh
TABLE .word 1CH,27H,3ah,48h,61h,7eh,0dfh,0d6h,0c3h,0bfh,0b0h,084h
;TEST VALUES

TREG .equ 14

 .text
START STM #TABLE, AR4
 STM #MASK, AR2
 STM #TREG, AR3
 LD #-12, ASM
 LD #BIAS, DP

cbeg SUB *AR2+,*AR4, A ;7FFFh - mucode' -> AH
 AND A,8 ;REMOVE POLARITY BIT
 ;(A<<8 AND A)=(7F AND A(16-23))<<24
 ST A,*AR3 ;STORE CHORD TO T: (A<<ASM-16)-> T and
 || LD *AR2-,B ;LOAD MASK FOR STEP ISOLATION B=1F<<16
 AND A,-7,B ;ISOLATE STEP BITS (17-20): BH = 2*mustep
 ADD BIAS,16,B ;BH = 2*mustep + 33
 BIT *AR4+,8 ;COPY SIGN OF mcode'->TC of ST0
 NORM B ;BH = (2*mustep+33)<<(muchord)
 SUB BIAS,16,B ;BH = (2*mustep+33)<< muchord) - 33
 XC 1,NTC ;mucode NEGATIVE? (BIT8 == 0; TC ==0)
 NEG B ;IF SO NEGATE INTEGER: BH *= -1
 B cbeg ;DO IT AGAIN!

SPRA163

34 A-Law and mu-Law Companding Implementations Using the TMS320C54x

A-law Compression: int2alaw.asm
; INT2ALAW.ASM
;
; Integer originally loaded into B Accumulator
; (Q12 number is assumed to be sign-extended to 16 bits)
;
; 6 LSB are then striped off and the result is put in A
;
; acode = asgn + achord + astep
;
; achord = (1Fh - T|EXP + B36|NORM)<<4
; = 1F0h - (T|EXP)*16 + (B36|NORM)<<4
;
; asgn = A8<<7
;
; astep = |int| << (T|EXP) - (B36|NORM)<< 4
; step is located in guard bits of B (B32-39)
;
; acode = A8<<7 + 1F0h - (T|EXP)*16 + (B36|NORM)<<4
; + |int|<<(T|EXP) - (B36|NORM)<< 4
; = A8<<7 + 1F0h - (T|EXP)*16 + |int|<<(T|EXP)
;
; Before transmission the even bits starting from bit0 are inverted
;
; acode* = acode XOR %01010101
;
; Final output is stored in low accumulator A(0-7)

 .def START
 .mmregs

 .sect acompnd
MASK .word 80h
BIAS .word 1F0h
SHFT .word 10h
INVT .word 055h
CONST .word 1Fh

TABLE .word -2460,-1505,-650,-338,-90,-1,40,102,169,420,499,980
;TEST VALUES

 .text
START STM #TABLE, AR0
 LD #MASK, DP

cbeg LD *AR0+, B ;LOAD INTEGER FOR CONVERSION
 SFTA B, -6, A ;STRIP OFF 6 LSBs: A = B>>6
 EXP A ;# LEADING ZEROS -> (T|EXP) =(25..31)
 ABS B ;B = |int|
 XC 1,AEQ ;If number is between 0 and 63
 LD CONST,T ;load 1F into T(EXP of zero yields NO sign bits)
 NORM B ;B = |int| << T|EXP
 AND MASK, A ;A = asgn
 ADD BIAS, A ;A = asgn + 1F0h
 MAS SHFT, A ;A -= (T|EXP)*16
 ADD BG, A ;A += |int| << T|EXP
 XOR INVT, A ;INVERT FOR XMISSION: A =(A XOR 55h)
 B cbeg ;DO IT AGAIN!

SPRA163

A-Law and mu-Law Companding Implementations Using the TMS320C54x 35

A-law Expansion: alaw2int.asm
; ALAW2INT.ASM
;
;IMPLEMENT EQUATION
;
; A-LAW = ASGN : ACHD : ASTEP
; X XXX XXXX
;
; INTNUM = [(2*ASTEP + 33)*2^(ACHD) - 32*DELTA(ACHD)] * SGN(ASGN)
;
; DELTA(ACHD) = 1 ACHD == 0
; = 0 elsewhere
;
; Final output is stored in low accumulator B

 .def START
 .mmregs

 .sect aexpnd
TABLE .word 0ah,0b2h,81h,90h,0f3h,0d5h,42h,65h,6ch,19h,05h,0a6h
;TEST VALUES

MASK1 .word 0ABh;(55h<<1)+1 to account for left shift on load
MASK2 .word 0FFh
ONEF .word 1Fh
ONE .word 1
THREE2 .word 32

 .text
START STM #TABLE, AR5
 LD #MASK1,DP

cbeg LD *AR5,1,B ;LOAD 2*ALAW CODE
 XOR MASK1,B ;INVERT AT RECEIVER
 AND MASK2,B ;REMOVE SIGN BIT
 SFTA B,-5,A ;STORE CHORD (SHIFT VAL) TO A
 SUB ONE,A ;A = CHD -1
 STLM A,T ;STORE CHD-1 TO T FOR NORMALIZATION
 AND ONEF,B ;ISOLATE SEGMENT
 BIT *AR5+,8 ;CHECK SIGN OF ORIGINAL A-LAW CODE
 XC 2,AGEQ ;IF CHD IS NOT -1 EXECUTE NEXT 2 INSTR
 ADD THREE2,B ;ADD 32 OFFSET
 NORM B ;ALIGN SEGMENT, (2*ASTEP+33)*2^(ACHR)
 XC 1,TC ;CHECK IF A-CODE WAS NEGATIVE (BIT8 == 0)
 NEG B ;IF SO NEGATE INTEGER
 B cbeg ;DO IT AGAIN!

SPRA163

36 A-Law and mu-Law Companding Implementations Using the TMS320C54x

Appendix C. References
Rabiner, L.R., Schafer R.W., Digital Processing of Speech

Signals, Bell Laboratories, Inc., 1978.

Bellamy, J., Digital Telephony, 2nd Edition, John Wiley &
Sons, Inc., New York, 1991.

Brokish, C., µ-law Compression on the TMS320C54x,
TMS320 DSP Designer’s Notebook, Texas
Instruments, 1996.

Hambley, A.R., An Introduction to Communication Systems,
Computer Science Press, New York, 1990, pp.
239-251.

Pagnucco, L., Erskine C., Companding Routines for the
TMS32010/TMS32020, DSP Applications with
the TMS320 Family, Vol. 1, Texas Instruments,
1989.

Stremler, F. G., Introduction to Communication Systems, 3rd
Ed., Addison-Wesley Publishing Co., New
York, 1990, pp.402-412, 541-547.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.

Copyright 2000, Texas Instruments Incorporated

